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Abstract: This qualitative study of six pre-service teachers’ perceptions and performance around 
proof by mathematical induction indicates strengths and challenges for collegiate teaching and 
learning. We report on constant comparative analysis of student mathematical work and on two 
focus group interviews of three students each.  
 

Background 

 The National Council of Teachers of Mathematics’ (2000) Reasoning and Proof 

Standard calls on school teachers to help students create and validate (determine the truth of) 

logical arguments. As part of their preparation, pre-service secondary teachers take courses such 

as discrete mathematics in college where they learn to make, test, and prove conjectures about 

mathematical patterns and relationships. In particular, they work with proof by mathematical 

induction (PMI). Though there are several studies on how learners might experience, understand, 

and use proof (Hanna, 2000; Selden & Selden, 2003; Tall, 1991; Weber, 2001, 2004), there are 

few on how ideas of proof by mathematical induction are taught or how they are perceived by 

learners who are prospective secondary teachers (Brown, 2008; Harel, 2002). One approach to 

examining the development of mathematical understanding is to consider the developmental, 

instructional, and learner aspects involved (e.g., Brousseau’s (1997) ontogenic, didactical, and 

epistemological obstacles or, at a smaller grain size, Gray and Tall’s (1994) proceptual 

synthesizing of language/symbol evocation, skill with process, and richly connected concept 

image). In this report, we have focused on the learner. In a separate report, we have focused on 
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the instructor (Tsay, Hauk, Yestness, Davis, & Grassl, 2009). As a consequence, the results 

reported here relate first to learners’ perceptions and address the question: What is the nature of 

pre-service secondary teachers’ perceptions and performance in learning proof by mathematical 

induction in introductory discrete mathematics courses? 

 The theoretical foundations for the design and analysis of the study were constructivist 

and informed by Brousseau’s theory of didactical situations. We also relied on the work of Harel 

(2002) regarding the role of learner perception of intellectual necessity in coming to understand 

proof by mathematical induction. Harel compared two forms of secondary school instruction for 

learning about inductive proof: traditional and necessity-based (see Table 1).  

 
Table 1. Aspects of Traditional and Necessity-based PMI Instruction – Based on Harel (2002). 
 

Traditional Instructional Approach  Necessity-based Approach 

T.1. Teacher presents examples of how a formula 
with a single, positive, integral variable (like the 
sum of the first n integers) is generalized from 
observations and an observed pattern.  
T.2. Teacher talks about why examples are not 
enough to prove a proposition P(n) is true for all 
positive integers n.  
T.3. Teacher demonstrates the principle of 
mathematical induction as a proof technique 
involving two steps:  
Step 1: Show that P(1) is true. 
Step 2: Show P(n) implies P(n+1) for all n. 
T.4. Students practice applying the steps to mostly 
algebraic examples (e.g., formulaic and symbolic 
recursive relationships). 

N.1. Students work with implicit recursion 
problems to develop pattern generalization 
skill; 
N.2. Students work with explicitly 
recursive relationships using quasi-
induction as a method of testing 
conjectures. 
N.3. Teacher presents math induction as an 
abstraction of quasi-induction that meets 
students’ felt need for a rigorous method of 
proof. 
N.4. Students make, test, and prove 
conjectures about a variety of mathematical 
statements using the language and 
procedures of mathematical induction. 

 
Though both of the mathematicians who taught the discrete mathematics courses we observed 

used traditional and necessity-based ideas, the balance of their use differed across the two 

instructors. In this sense, the study was informed by variety of didactical situations (and of 

didactical obstacles – see the end of the Results section). Nonetheless, the main result is about 
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learning and the kind of conceptual restructuring that may be needed for any learner of proof by 

mathematical induction in any didactical situation. That is, though the language/symbol set and 

procedure for proof by mathematical induction can be taken up and used by students in many 

successful ways, a reorganization of thinking about mathematics, particularly about what 

constitutes “problem-solving” and about the nature of “proof” appears to be necessary in coming 

to a conceptually rich and connected concept image for proof by mathematical induction. 

Methods 

Setting  

 The undergraduates in our study were enrolled in two sections of discrete mathematics at 

the same 12,000-student doctoral-extensive university in the United States. Most students in the 

two classes (65%) were planning on becoming secondary school mathematics teachers and some 

(about 25%) were planning to be primary school teachers with a specialty in mathematics. About 

half of the students in both classes had graduated from high schools within a 200-mile radius of 

the university and most had not encountered proof by mathematical induction before in a high 

school or college mathematics course. Like the U.S. secondary teaching population, the students 

were mostly from middle socio-economic status, majority culture, backgrounds. One instructor, 

Dr. Isley taught largely in Harel’s (2002) traditional style and the other, Dr. Vale, often used a 

necessity-based approach.  

 The instructors were both mathematicians. Dr. Isley, with a PhD in combinatorial 

algebra, had taught college mathematics for more than 20 years and was the author of the text 

used in the class. He had taught discrete mathematics more than 20 times, and generally used 

lecture with occasional in-class activities. During the three weeks of PMI focus, Dr. Isley 

lectured 60% of the time and the class spent 40% of the time attending to in-class lecture 
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presentations of inductive proofs (on overhead transparencies) by student teams. Before students 

presented, they met with Dr. Isley in his office, where he helped them validate their work. Dr. 

Vale, with a PhD in logic and model theory, had 10 years college teaching experience though 

this was his first time teaching proof by mathematical induction and the first time he had taught 

discrete mathematics. Dr. Vale used Isley’s textbook, and developed additional activities for 

class, using a mix of traditional and necessity-based activities in class. During the observed 

lessons on PMI, Dr. Vale lectured about 35% of the time with the balance of about 65% of class 

time spent on students working individually and in groups to make, test, and prove conjectures 

about recursive and closed-form expressions. A notable distinction between the experiences of 

students in Dr. Isley’s class and those in Dr. Vale’s class was that students in Dr. Vale’s class 

validated each others’ inductive proofs during in-class group work and regularly had proof-

validation tasks where they analyzed potential proofs provided by Vale.  

 Each focus group had students with course grades of A, B, and C respectively (in what 

follows, student pseudonyms begin with letters corresponding to course grades). Alan, Brooke, 

and Chuck were the focus group students in Dr. Isley’s class. Anna, Beth, and Celia were the 

focus group students from Dr. Vale’s class. At the time of the interviews, all were planning to be 

school teachers: Alan, Chuck, Anna, and Celia were in a bachelor’s degree program in 

mathematics for secondary teachers while Brooke and Beth were in a degree program to prepare 

elementary mathematics specialists.  

Data Collection and Analysis 

 We relied on information from four data gathering activities. First, we observed (in 

person or from a video recording) seven 50-minute class meetings on PMI for each instructor 

and completed related PMI textbook reading and activities (data set A). Second, at the end of the 
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semester, we conducted 90- to 120-minute video-recorded interviews with focus groups of three 

students each – one group from each of the two discrete math classes (data set B). The third form 

of data (set C) was a 90- to 120-minute video-recorded interview with each instructor about 

mathematics, about proof by mathematical induction in particular, and about the teaching and 

learning of both. Finally, the fourth set of data (set D) was student work on two PMI-related 

common final exam items (n=49), one requiring students to generate a proof, one asking students 

to validate a purported proof. For the work reported here, we spent the greatest analytic effort on 

the student-generated forms of data (set B – focus group interviews and set D – student final 

exam work). Figure 1 summarizes our iterative process for qualitative open coding for themes 

within data sets and axial coding for categories and sub-categories across data sets.  

 

Figure 1. Flow chart of data analysis process. 
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For example, we started with open coding of focus group interviews to generate potential 

categories. Based on these categories, we used axial coding of student solutions to final exam 

items to refine categories and identify potential sub-categories. Then we revisited and reviewed 

the video of focus group interviews, using the hypothesized categories and sub-categories as a 

basis for inductive analysis.  

Results 

 Students talked explicitly about three categories of challenges in learning proof by 

mathematical induction.  A fourth potential category emerged from analysis of student work on 

final exams. All challenges were common to students from both classes. Students noted they had 

begun to develop a “different kind of thinking” from what they had done to date in “solving 

problems” in mathematics. They also commented on the difficulty of connecting what seemed to 

them a jumble of procedures: from the geometry of n-gons to rules for exponents. A third kind of 

cognitive restructuring for students, particularly those in Dr. Vale’s class, occurred when faced 

with proof-validation tasks. Finally, the problematic nature of coming to understand an infinite 

iterative process was a category that was not discussed explicitly by students, but that emerged 

through different symbolic/linguistic mechanisms in student written work on the final exam. 

Challenge 1: Problem-Solving 

All six students spoke about “doing regular problems” and the “hard problem-solving” needed 

for generating a proof. In particular, they reported “solving the problem” of “going from P(k) to 

P(k+1)” and that it required flexible use of previous learning.  

Alan: There’s a lot of manipulation you have to do. 

Beth: The hardest part that I find is trying to actually prove for k+1… that math. 

Brooke: You need a lot of background algebra knowledge and different mathematics 

knowledge … like 3n+1 is 3n times 3. 
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Also, some students relied on the language of problem solving to talk about proving: 

Chuck: When I was watching the presentations [by other students] I was trying to make 

notes about how people solved them - the key points. 

During both focus groups, students mentioned a desire for “real-world problems.” Dr. Vale’s 

students spent 10 minutes generating possible applications, mostly about recursive or iterative 

growth models. Dr. Isley’s students said they did not recall any applications, except that PMI had 

to do with computers being right every time, and did not generate examples on their own.  

Challenge 2: Connecting 

 All of the focus group students spoke about the idea of synthesizing or “pulling together” 

declarative and procedural knowledge from multiple sub-domains in mathematics for PMI. This 

extended beyond problem-solving and ranged from using strategies from geometry, algebra, and 

calculus, to seeing “how things are related, deeper math,” including specialized knowledge about 

things like the Fibonacci numbers. Students reported on the restructuring of their understanding 

of mathematics and of their perceptions about their own role in making mathematics. They 

perceived a challenge in developing autonomy for setting up the relationship between P(k) and 

P(k+1) in preparation for using the inductive hypothesis. 

Anna: I really like how it was set out: you’re always going to have a basis, you’re always 

going to have the induction step…but it would have been really helpful for me if 

there had been more, smaller steps. …And sometimes I would have the right thing, 

but I didn’t know it was right. 

Celia: I didn’t know exactly how [I] was supposed to pull every thing together [to use the 

inductive hypothesis]. 

Brooke: I kind of stumbled… If I don’t see all the steps, I get caught up on it and then I 

have to figure it out on my own. … I had taken good notes, I knew all the steps, 

but it’s hard to know how to connect, how to come up with the things that will 

connect later on. 
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Challenge 3: Validating 

  In both classes, students had experiences with reflecting on and validating proofs by 

induction written by other people. However, these opportunities differed. All six focus group 

students commented on the challenge of “working backwards” in validating a proof and all 

preferred proof-generation to proof-validation. 

Anna: I thought it was easier to create my own [proof] as opposed to correcting one that 

was already done that was wrong. 

Though all of the students were planning on becoming teachers and acknowledged that grading 

was part of being a teacher, none reported seeing a connection between the idea of validating a 

purported proof and the work of grading that they would do as teachers. This may have been, in 

part, a result of the didactical situations in the two classes around validation. In Dr. Isley’s class, 

students met with the instructor in his office and he led them through the validation and revision 

of their proofs. Dr. Isley had exhorted students “to have it right first” before presenting. Dr. Isley 

noted in his interview that he expected students to validate each other’s proofs during the 

presentations but that he expected no significant errors in the proofs presented. So, though his 

students had engaged in validation of their own work, neither they nor Dr. Isley had expected to 

engage in substantive validation during their classmates’ presentations. Students who 

experienced Dr. Isley’s largely traditional approach felt a procedural competence in asserting the 

framework for proof by mathematical induction (for an example of the detail with which students 

presented the procedure in writing a proof, see Figure 2). Just under half of the students in both 

courses wrote a complete and correct proof by mathematical induction on the final. Also, about 

half (not necessarily the same students) in both classes completely and correctly validated a 

proof by mathematical induction on the final exam. 
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 In Dr. Vale’s class, students had in-class tasks where they were meant to validate each 

other’s proofs, but students reported not always being sure that the group had created a valid 

proof unless it was reviewed by Dr. Vale. Additionally, Dr. Vale regularly provided faulty proofs 

with structural and syntactic/symbolic errors for students to validate (see Figure 3). Dr. Vale 

noted in his interview that he would likely use student proofs with “authentic errors” the next 

time he taught PMI.  

Figure 3. Student validation, from Dr. Vale’s final. 

Figure 2. Student proof by mathematical induction, from Dr. Isley’s final. 
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Challenge 4: Infinite Iteration  

 A fourth potential category of epistemological obstacle emerged from what we had, at 

first, seen as an issue of didactical obstacle. Coding of student work on the common final exam 

items led us to identify two additional challenges, each associated with a particular instructor. In 

Dr. Isley’s case, the use of non-standard terminology in-class appeared to be associated with 

idiosyncratic language/symbol use in communicating proofs. For example, in Figure 2 the 

student asserted “Next, we must show that we can climb the ladder by stepping up to the next 

wrung.”  While Dr. Isley and his students saw the ladder analogy as useful in learning about 

PMI, such a statement on a proof in another context (e.g., in another instructor’s class) might not 

have had much meaning. In Dr. Vale’s class, students worked a great deal with recursive 

representations of relationships (e.g., defining ak in terms of ak-1 – note that in Figure 3 the 

student suggests defining the relationship recursively). The symbolic foundation of working with 

recursion appeared to be associated with errors in some students’ proofs, such as several students 

writing or validating an inductive step based on showing P(k) implies P(k-1) rather than P(k) 

implies P(k+1). In both cases, we suggest that the underlying issues for learners were the 

iteration and infinity encapsulated by the inductive step in a proof by induction. 

Discussion 

 Through examination of student perceptions we identified three categories of potential 

epistemological obstacles in learning about proof by mathematical induction and through 

examination of their performance on final exam items, came up with a fourth category. These 

categories included aspects of problem-solving, connecting, and reasoning (in particular, 

validation), and infinite iteration.  While the first three are key areas of the NCTM (2000) 

standards for K-12 mathematics, the fourth involves the concepts of infinite process and infinity, 
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which are usually associated with advanced mathematics. Nonetheless, recent work by Brown 

(2008) suggests that the ideas of infinity, particularly of infinite iteration, are accessible to 12-

year-olds. As has been noted in other work, the iterative and infinite nature of PMI, particularly 

in understanding the inductive process itself, is both a teaching challenge and a learning 

challenge (Brown, 2008; Harel, 2002). Future work will need to include explorations with 

learners and tasks that provoke attention to, and conversation about, each of the four proposed 

categories. One path to such tasks will be to talk with advanced undergraduates, graduate 

students, and professors in mathematics to develop, pilot, and refine infinite iteration concept-

eliciting tasks.  

 From re-analysis of student work on common final exam PMI items, we identified further 

support for the three categories that arose from the focus groups and we have begun developing 

sub-categories. Several cycles of refinement have led to planning for future work that will 

include inductive coding of student final exam work and focus group interview data in terms of a 

coding triple based on the proceptual development categories:  

Gray & Tall (1994, p. 121) describe a procept essentially as the amalgam of three 

things, a process (such as addition of three and four), a concept produced by that 

process (the sum) and a symbol that evokes either concept or process (e.g. 3+4). 

Following Davis (1983), they distinguish between a process which may be carried 

out by a variety of different algorithms and a procedure which is a “specific 

algorithm for implementing a process” (p. 117).  A procedure is therefore 

cognitively more primitive than a process (DeMarois & Tall, 1996,  p. 2). 

 

The PMI procept triple would involve a judgment, based on the nature of student perceptions 

communicated during existing (and possibly additional) focus group interviews, about (a) the 

evocations associated with symbols/language of PMI, (b) the process of generating the “steps” in 
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PMI – with particular attention to the idea of infinite iteration, and (c) validating (as a component 

of concept development). From such coding, we hope to identify instructor and learner 

approaches to proof by mathematical induction that facilitate the engagement and resolution of 

the kinds of epistemological obstacles we have proposed here. 
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