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Abstract

 This article reports on the logical reasoning efforts of five prospective 
elementary school teachers as they responded to interview prompts involv-
ing nonsense, natural, and mathematical representations of conditional 
statements. The interview participants evinced various levels of reliance on 
personal relevance, linguistic contextualization, and time-dependent inter-
pretation in working through reasoning tasks. Different kinds of affective 
and cognitive demands, dependent on personal history, may be needed for 
the depersonalization, decontextualization, and detemporalization required 
by abstract logico-deductive reasoning. Implications for college instruction 
with future elementary school teachers include suggestions for logical ar-
gument analysis activities aimed at enriching learners’ reasoning situation 
images.

 Encouraging students to reason logically throughout their mathemat-
ics education helps them build the understanding that mathematics makes 
sense. According to the Principles and Standards for School Mathematics 

(National Council of Teachers of Mathematics [NCTM], 2000), proof and 
reasoning should be incorporated regularly into the mathematics classroom 
from pre-kindergarten through grade twelve. In particular, “[b]y the end 
of secondary school, students should be able to understand and produce 
mathematical proofs - arguments consisting of logically rigorous deduction 
of conclusions from hypotheses” (p. 55). Consequently, for every teacher, 
the ability to explain in a convincing way why a mathematical proof (formal 
or informal) is true and valid is a valuable tool. It is also a difficult teach-
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ing skill to develop and maintain in the face of the disparate and immediate 
needs of students in the classroom (Durand-Guerrier, 2003; Simon, 2000).
 Research over the past 75 years has indicated that understanding proof, 
particularly logical inference, is a challenge to students of all ages, in-
cluding preservice teachers (Bell, 1976; Healy & Hoyles, 2000; Selden & 
Selden, 2003; Wilkins, 1928). In particular, studies of college students’ ef-
forts with logical inference and conditional reasoning in the 1970s reported 
that undergraduates in general, and preservice elementary teachers in par-
ticular, did not reliably interpret syllogistic or disjunctive logical statements 
presented in natural language form (Jansson, 1975; Eisenberg & McGinty, 
1974). In her work with prospective elementary teachers, Damarin (1977a, 
1977b) found learners had a tendency to treat conjunctive, conditional, and 
biconditional statements that were presented in abstract, visual, mathemati-
cal form in the same way: students approached all of the tasks with the 
logic rules associated with conjunction, declaring a compound statement 
true only if all parts were true. Along similar lines, Vest (1981) noted that 
college undergraduates did not have a robust understanding of disjunction 
and conjunction in a natural language setting. In fact, the comprehension 
of Vest’s participants closely resembled that of the preservice teachers in 
Damarin’s studies despite the difference in natural versus mathematical lan-
guage contexts. In part, the work reported here reproduces this result 30 
years later.
 Austin (1984) reported on the interpretations of logical implication of-
fered by a broad cross-section of undergraduates. Specifically, he exam-
ined four reasoning patterns: detachment, conversion, inversion, and con-
traposition. Detachment (Modus ponens) is where one concludes Y if both 
the implicative statement D Y and its antecedent X are assumed true; 
conversion is the pattern whereby one realizes that X cannot necessarily 
be concluded when both X  Y and Y are assumed; inversion involves 
recognizing that the negation of Y, “notY” cannot necessarily be concluded 
if X  Y and notX are assumed; contraposition (Modus Tollens) is the pat-
tern whereby one concludes notX is true from the assumptions that X  
Y and notY both hold. The structure of modus tollens is actually related 
to but not identical to the logical construct of the contrapositive notY  
notX of a conditional statement X  Y; in Austin (1984) the pattern was 
named “contraposition.” Although students from a random sample (n=219) 
could use detachment reasoning fairly well (73% correct responses), they 
had difficulty with conversion (57% correct), contraposition (47% correct), 
and inversions (51% correct). Students could reason if the conditional was 
given in the familiar “forward” form. However, many had difficulty rea-
soning about implications when given variants of the standard conditional 
form. Austin concluded that this conflation of a conditional statement with 
its variants made mental processing of theorems in mathematics difficult 
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and that, as a result, comprehension and application of theorems was a chal-
lenge for many students.
 It has been suggested by a variety of researchers that learners go through 
four stages in developing mathematical logical reasoning skill. For example, 
in terms of the four categories of Action-Process-Object-Schema (APOS) 
theory (Asiala, et al., 1996), construction of understanding begins (a) for-
malized actions without a great deal of understanding, followed by (b) some 
structuring of logical inference into process which, when repeated, can lead 
to (c) a learner observing parallels, noticing properties (like the  relation 
between converse and inverse), and encapsulating inferential processes like 
“X  Y” into a new kind of statement conceived of as an object, “S: X  
Y.” this now reified object can, in turn, be the subject of new actions and 
processes (Sfard, 1991). For example, a student will be able to conceive of 
transforming the statement S into a new object, its contrapositive: “notX  
notY.” From actions, processes, and objects arises the most complex form, 
(d) schema, a mental structure in which the processes and objects of infer-
ential reasoning are connected to other understandings about implication, 
contradiction, and proving.
 Balacheff’s (1988) levels of proof understanding are another example 
of a four-stage model. These four realms of proof understanding are (a) 
native empiricism, characterized by “proof by example” strategies; (b) cru-
cial experiment, including the generation of counter-examples; (c) generic 
examples; and (d) thought experiment, where one abstracts inductive em-
pirical approaches to arrive at understanding of highly structured deductive 
logical forms. Moreover, Balacheff (1988) suggested, “Language must be-
come a tool for logical deductions and not just a means of communication.” 
He contended that the use of language in a mathematically deductive way 
required forms of decontextualization, depersonalization, and detemporal-
ization (more on this below).
 The work of Balacheff (1988) and others has suggested that as students 
build understanding of logico-deductive reasoning they move from every-
day-language-based efforts to the use of conditional implication. This be-
gins by recognizing that certain forms and rules exist and subsequently in-
cludes an understanding that certain mathematical constructs can be thought 
of as higher level or more abstract objects. Ultimately, learners come to the 
mastery of logically consistent and valid transformations of logical objects 
(e.g., conditional statements, quantified statements).
 Gila Hanna has pointed out, in several contexts (1989, 1995, 2000), that 
a proof that convincingly explains is not necessarily the same as a proof 
that proves. It has been well documented that logically valid (and invalid) 
conclusions consistent with one’s experiences and beliefs about life are 
more convincing and more frequently accepted as valid than unbelievable 
or nonsensical conclusions (Thompson, 1996). This is referred to as “be-
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lief-biased” and a great deal of work has been done in cognitive science 
and psychology to create a theory explaining it (Markovits & Nantel, 1989; 
Oakhill & Johnson-Laird, 1985; Torrens, Thompson, & Cramer, 1999). 
Neuro-imaging research on brain activity during reasoning tasks has indi-
cated that there are distinct differences in the constellations of neural fir-
ings during logical reasoning dependent on the belief conditions of the task 
(Goel & Dolan, 2003). In Goel & Dolan’s study, familiar natural-language-
based syllogistic reasoning tasks activated areas of the brain associated 
with both semantic retrieval and information selection. This engagement 
was independent of the validity of the syllogism or the truth of its conse-
quent. An example from the current study of a natural-language-based task 
would be: If it is raining, then Tom wears a red shirt. If Tom wears a red 
shirt, then Susan bakes a cake. It is raining. Does Susan bake a cake? (Yes) 
(No) (Not Necessarily). During logically equivalent decontextualized (“be-
lief-neutral”) reasoning, there was additional activity in areas of the brain 
associated with abstraction, numerical estimation, and with manipulation 
of spatial information. An example from the current study, in mathemati-
cal language, would be: Suppose that X implies Y. Suppose also that Y 
implies Z. Does X imply Z? (Yes) (No) (Not Necessarily), or, in nonsense 
(context-free) language: Exabiffs which trundle herbariously do prevanker-
ize lurgidly. Those who prevankerize lurgidly always groop their foonting 
turlingdromes. Do Exabiff which trundle herbariously groop their foonting 
turlingdromes? (Yes) (No) (Not Necessarily). Goel & Dolan also reported 
that during tasks which were “inhibitory” (e.g., a correct syllogistic form 
with false conclusion or an invalid form with a conclusion that happened to 
be true), participants who correctly completed the tasks appeared to detect 
and compensate for the conflict between their beliefs and the logical infer-
ence: suppressing belief-biased response to engage right parietal reason-
ing activity. When a participant incorrectly completed the task, such right 
parietal engagement was absent. Instead, part of the brain associated with 
emotion was active. In other words, when presented with conflict between 
logical form and conclusion truth-value, participants either shut down af-
fective response to focus on logic, or they shut down logical response and 
went with their feelings.
 The process of deciding that a valid conclusion must follow necessarily 
(not just possibly) from its premises is an appeal to “logical necessity.” 
Research on logical necessity and belief bias are especially pertinent when 
investigating the transition from “child logic” (conflating a statement with 
its converse) to the facility with logic required for teaching. In particular, 
in mathematical reasoning one does not accept a conclusion, however be-
lievable it may seem, unless it necessarily follows from its premises. An 
important facet of the research on belief-bias, for the present discussion, is 
the absence of agreement on a theory that can consistently explain the many 
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approaches to logical implication demonstrated by human beings. It may be 
that such a theory, if it exists, is not any of the single theories currently in 
use (e.g., Oakhill & Johnson-Laird’s (1985) mental models or Rips’ (1994) 
rule-based reasoning). Such a conjecture is supported by results from Klau-
er, Musch, & Naumer (2000) indicating that no single theory parsimoni-
ously predicts outcomes. Klauer et al. called for qualitative work investigat-
ing the “talk-aloud” reasoning of people validating arguments in and out of 
familiar contexts.
 The work presented here addresses this call to action. The core of the 
research reported below was an attempt to provide a theory, grounded in 
the literature and informed by five “talk-aloud” reasoning interviews, for 
coming to understand students’ conceptualizing of logical inference. Like 
Hoyles and Küchemann (2002), the focus was on how students “learn to 
move between mathematical ways of proving and those that are rooted in 
everyday thinking.” After presenting the methods and results of talk-aloud 
interviews, the discussion section offers connections between empiricale 
and theoretical results on reasoning, logical necessity, and belief bias. A 
conjecture is advanced and supported that due to individual variation in 
affective and cognitive connections within Balacheff’s (1988) decontextu-
alization, depersonalization, and detemporalization, not all three are neces-
sary for logical reasoning for all people. Learners may make choices, im-
plicitly or explicitly, about which of the three to engage when the encounter 
conflicts in reasoning tasks. The conclusion frames a theory for student’s 
logical strategy use. The aim is not to identify stages in student development 
of logical reasoning. Rather, the goal is to describe constructive processes 
going on within the stages, whether or not the learner is fluidly articulate 
about their thinking. The report ends by addressing the implications of the 
presented theory for pre- and in-service teacher preparation in the contexts 
of collegiate mathematics education and professional development.

Method

 The philosophical underpinnings of the study were constructivist: indi-
viduals construct their own understanding of concepts. Moreover, one way 
to bring to the surface observable artifacts or someone’s constructed under-
standing is to create a cognitive conflict, what has been called a disruption 
to equilibrium (Inhelder & Piaget, 1958), and investigate how the individual 
resolves the conflict.
 The study was a naturalistic inquiry through qualitative and quantitative 
data gathering and analysis. Some details of the quantitative, questionnaire-
based, portion of the study are provided to give context for the interviews. 
However, the focus in this report is on the results of the qualitative analysis 
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of interview data. Statistical analysis of written surveys is the subject of 
another report.

Research Teams

The study included collaboration between two research teams. Team 1 con-
sisted of two mathematics professors at a public comprehensive university. 
This team designed the survey instrument and interview protocol, collected 
survey and interview data, and contributed mathematical expertise to the 
project. Team 2 consisted of the first author (a researcher in mathematics 
education) and two mathematics education Ph.D. students. This team was 
responsible for qualitative data analysis and contributed grounded theory 
expertise to the study.

Questionnaire Instrument

 A 37-item questionnaire was administered in the first and last weeks of 
two sections of a Mathematics for Elementary Teachers course taught by a 
member of Team 1 in Spring 2001. The instrument consisted of five sec-
tions (see Appendix). The first section collected demographic information 
and asked students to respond to two prompts about their mathematical self-
perceptions. The next three sections of the instrument were made up of 30 
logical inference items. Section 2 was made up of Items 1 through 10 and 
used nonsense language. Section 3, Items 11 through 20, used everyday 
conversational English or natural language. Section 4 consisted of Items 21 
through 30 and used symbolic mathematical language. Each of the ten ab-
stract mathematical statements in this fourth section had a logically equiva-
lent partner in each of Sections 2 and 3, though not in the same order. To 
illustrate the relationship among the sections, consider the following three 
logically equivalent items from the survey:

 9. Whenever it’s a rainy day, florks phlapenaggle red shirts. Today, it 
is not raining. Are the glorks phlapenaggling red shirts? (Yes) (No) 
(Not necessarily)

12. If the man is friendly, then the woman is sad. The man is not friend-
ly. Is the woman sad? (Yes) (No) (Not necessarily)

29. Suppose that X implies Y. Suppose X is false. Is Y false? (Yes) (No) 
(Not necessarily). [Note: In order for item 29 to be perfectly paral-
lel to items 9 and 12, it would have been necessary to have it ask 
“Is Y true?” at the end rather than “Is Y false?” The wording used 
in item 29 was used for variety, to make the parallels among the 
three 10-question sections less obvious, and to allow later analysis of 
how extra “nots” might affect student’s answers; mathematically, a 
student’s answer to “Is Y true?” would uniquely define their answer 
to “Is Y false?”]
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 The final section of the survey consisted of four short answer questions 
(Items A, B, C, and D). Two of these  items concerned logical reasoning and 
two were intended to gather reflections from students on the survey process 
and their thinking while completing the instrument. The item from this final 
section discussed most here was:

Item B: Consider the statement “If glimmerles are flondish, then all 
kelevs dringle.” Suppose we know that flimmerles are not flond-
ish. Is the statement in quotes true? (Yes) (No) (Not Enough In-
formation)

Item B is logically equivalent to: Consider the statement “X implies Y.” 
Suppose X is false. Is “X implies Y” true?
 Though no piloting of the instrument was conducted, the designers of the 
instrument agreed on its face and content validity. Student reports, during 
interviews, also supported its validity. In fact, because the purpose of the 
study was an investigation of the absence of consistent interpretations of 
logical inference across different contexts by the participants, reliable cor-
relation among the sections of the instrument was not expected.

Interviews

 Team 1 conducted interviews with five volunteer students from the sur-
veyed sections of the course. Interviews were informal and took place in a 
windowless faculty office with nature posters on the walls, under a combina-
tion of incandescent lamps and fluorescent overhead lights. The interviews 
were recorded using a table-top cassette recorder, with built-in microphone, 
placed on the desk between the main interviewer and the participant.
 Each open-ended interview had three parts. First, the participant was 
asked to review the survey and to make observations about the 30 items 
in Sections 2, 3, and 4. Second, the participant (who had been given her or 
his own completed survey) was prompted about whether he or she would 
change any of the responses. If so, those items were discussed and the inter-
viewee’s reasons for changing the answer explored. Finally, whether they 
suggested changing their answer or not, interviewees were asked to con-
sider at least one of the logical reasoning items (from Sections 2, 3, 4, and 
the short-answer items in Section 5) and asked to discuss the reasoning that 
lead to their answer.
 Tapes of the five interviews were transcribed by Team 2 and analyzed 
by them according to the constant-comparative grounded theory methods 
described by Stauss and Corbin (1998). All interviews were initially ana-
lyzed through open coding for themes common across interviews then re-
analyzed and organized into categories through axial coding. In the final 
step, selective coding, the categorical structure resulting from axial coding 
was integrated into theory and interviews were re-examined. The outcome 
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of selective coding led to the reported results. Colleagues and graduate stu-
dent researchers provided subsequent theory checking and triangulation for 
coding.

Participants

 Before moving to the Results section, we give a brief introduction to 
interviewees. It should be noted that self-selection by students willing to be 
interviewed for extra credit may have contributed to greater representation 
by students with lower grades and by mathematically gregarious students 
(see below). The Results section describes the nature and scope of partic-
ipants’ interview responses based on the central categories that emerged 
from interview data. The names of participants are pseudonyms. The par-
ticipants are presented here in order from least to most able in the logical 
reasoning tasks.
 Linda. A preservice teacher in her third year of college, she had the great-
est difficulty with the reasoning tasks. Throughout her interview Linda made 
it clear that she had a “negative reaction” to mathematical language.
 Amy. Also in her third year of college at the time of the study, she later 
graduated magna cum laude from the university with a degree in Elemen-
tary Education. Like Linda, Amy reported having some difficulties com-
municating mathematical concepts.
 Ruby. A first-year student with no previous college mathematics courses, 
she was more articulate about her thinking and reasoning than Linda or 
Amy. In judging the validity of statements, Ruby relied mostly on empiri-
cism related to “real life” situations she could imagine experiencing her-
self.
 Margaret. A returning student in her third year of college, she was five 
years older than a traditional third-year undergraduate. Of the five respon-
dents, Margaret appeared to have the greatest flexibility in connecting and 
moving between natural, nonsense, and mathematical language representa-
tions.
 Jack. The only man among the interviewees, he was also a third-year stu-
dent studying elementary education. Team 1 learned during the interview 
that Jack had taken a college-level logic course (none of the others inter-
viewed had such a background); it was very rare for students in the first-
semester mathematics course for elementary teachers to have had such prior 
experience. In addition, Jack was the only student to “strongly agree” with 
“I like math.” His interview was the longest, at 65 minutes, in part because 
Jack was the only respondent to initiate discussion within new contexts in 
his attempts to explain his understanding of mathematical concepts.
 Table 1 summarizes some demographic and college grade information 
along with the information these students provided on their questionnaire in 
responses to the two prompts:
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 For the statement “I am good at math”, do you (circle one):
(Strong agree) (Agree) (Neutral) (Disagree) (Strongly Disagree)

 For the statement “I like math”, do you (circle one):
(Strongly agree) (Agree) (Neutral) (Disagree) (Strongly Disagree)

Results

 Two main categories emerged from comparative analysis of the inter-
view transcripts: contextualization and logical reasoning. Contextualiza-

tion refers here to the attempts by respondents either to use mathematical 
language to communicate with the interviews or to recast a statement into 
a familiar context. Logical reasoning signifies participants’ understanding 
of deductive interference and conditional reasoning; this category included 
two sub-categories: comparative-conflict and semantics. The sub-category 
comparative-conflict emerged from students’ attempts to resolve interpre-
tive conflicts when comparing logically equivalent items while the seman-

tics sub-category concerns the relationships noted by students between logic 
trigger words, such as “if,” “then,” and “whatever,” and the statements to 
which they referred.

Table 1. 
Summary of Interviewee Information
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Contextualization

 Much of the interview discourse involved participants’ efforts to con-
textualize the different types of language used on the survey instrument 
and used by the interviewers. Interviewees’ attempts appeared to be aimed 
at three goals: to create meaning, to make decisions, and to formulate re-
sponses to interviewer comments and questions. When assigning truth-val-
ues to conditional if-then statements, participants clearly wrestled with their 
own efforts to contextualize the predictions within the if-then statements. 
This could be seen most clearly in the comparisons respondents made be-
tween the items in Sections 2, 3, and 4. The first ten-item section was named 
nonsense language because it included made-up words (e.g., “glorks” and 
“phlapenaggle” in survey Item 9). Items 11 through 20 were the natural 

language section because the prompts contained everyday language and 
commonplace nouns. In Items 21 through 30, the symbols X and Y repre-
sented antecedent and consequent. These ten items were the mathematical 

language section.
 Interviewers asked participants to put the three sections in order from 
hardest to easiest and to talk about any relationships within or between the 
sections. Amy, Jack, Margaret, and Ruby (but not Linda) asserted that the 
first set, nonsense language, was most difficult and that the mathematics 
statements were more difficult than the natural language ones. Linda, how-
ever, said she felt the nonsense language section was easier than the math-
ematical language section: “Because when you’re saying something like 
‘Suppose X implies Y, suppose Y is false, and is X true?’  You know it’s 
just the way it sounds. So it just gives you kind of like a negative reaction 
to the question.”
 Margaret pointed to the personal relevance to terminology as a deciding 
factor in explaining her choice of ordering from nonsense language (hard-
est), mathematical language, to natural language (easiest): “After I started 
reading through it [the natural language set], and came to the things that I 
knew about, I could picture the things that I didn’t know about [in the set 
with nonsense words].” That is, during her written work on the question-
naire, she had moved between the natural and nonsense language sections, 
using her comfort with meaning in the one to help her decipher meaning 
in the other. The questions in the mathematical set, with letters X and Y, 
were more meaningful to Margaret than the nonsense language because she 
“could look at it and understand it,” and she was “more familiar with them.” 
Moreover, Margaret recalled that while completing the questionnaire she 
was able to re-write something presented in nonsense terminology using 
“an equation in terms of X and Y” so that she could decide a truth value for 
the statement (this use of “equation” will be revisited below, in discussing 
comparative-conflict).
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 Amy reported difficulties similar to Margaret’s when dealing with the 
unfamiliar nonsense words. She said, “I still tried to picture them [nonsense 
words] but it was harder,” and “you couldn’t really picture them in your 
mind.” Neither Ruby nor Linda saw any purpose in attempting to “picture” 
or “reason” about nonsense. Because the contexts of the survey and inter-
view were mathematical (the interviewers were both mathematics profes-
sors and the survey had “X and Y stuff” on it), it may be that not having the 
definition of the nonsense terms in a mathematical context was enough for 
Ruby and Linda to dismiss the idea of reasoning about them. Alcock and 
Simpson (2002) noted that even though humans may tend to think in every-
day terms about a concept using a prototypical example, mathematics calls 
for reasoning based on definitions of concepts.
 Jack explicitly stated, “Visualizing makes the big difference” for the 
nonsense words because “it’s like stuff - I mean make-believe words or 
stuff that you would find on like Star Trek [a science fiction television and 
movie series].” Consequently, the requirement that he create a fictional im-
age – rather than accessing an existing one, like for “red shirt” in a natural 
language prompt – made it harder for him to “visualize” and harder to work 
with nonsense language statements. However, Jack also reported trying to 
do “mental mathematics” to recast into symbolic logic some of the state-
ments with natural language or nonsense words. Recall that Jack was the 
one student who had taken a logic course in college. Additionally, Jack 
noted relationships between individual survey items. For example, he vol-
unteered a symbolically based comparison between Item 30 and Item 11:

Jack: I just went, I basically, when I was thinking about it I could see 
like suppose X implies Y, suppose that Y implies Z. Does X imply Z?...
well, rain would be X, Y then for Tom wears a red shirt and Z would 
be Susan baking a cake...

Besides re-contextualizing natural language statements into mathematical 
statements with representative variables, Jack also tried to use symbols to 
substitute for nonsense words. For example, he said, “If I, in like, underline 
[Jack underlines statement on questionnaire] ‘every hooloovoo is a snar-
koid,’ every h is a s....” Nonetheless, he did not think there was any merit 
in this kind of substitution. He believed that the terms in the statements 
should refer to something “for real” so that “people would be able to picture 
something in there.” Jack did say that he knew that the context of prediction 
would not change the truth-value of a statement:

I mean, it won’t change the, I mean it, it’s still all dependent on “if this, 
then this” ya know, “then you have this”...it’s dependent on that it’s 
still gonna have the same answer if...so long as those words [if...then...] 
stay the same.
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 When asked it they saw any relationships among the items in the three 
sections, participant’s answers varied. To this question Margaret replied, 
“Actually, the first ten, it was about fiction...and then relations go to man for 
the next ten questions, and then for the last ten questions it’s all mathemati-
cal.” Margaret also mentioned that she realized that the three sets were all 
related to each other after reading through the entire survey: “The terminol-
ogy, the questions were very similar.” Once she came to this realization, 
Margaret went back to the nonsense language section and used comparison 
and her general conclusions about the natural and mathematical language 
sets to give answers to the nonsense language prompts. However, she did 
not rewrite or represent any statement with symbols. Amy and Ruby saw 
similarities between the sections, but did not articulate them in depth during 
their interviews. In contrast to everyone else, Linda asserted there were no 
structural or underlying relationships between the items in the various sec-
tions. She said, “they ask different, totally different things.”
 Most participants focused on the contexts of prediction. That is, for them, 
truth value was primarily attributed according to the contextualized plausi-
bility of the consequent, a clear indicator of belief-bias in action. Contextu-
alizing the language bring used also appeared to be critical to understanding 
and responding to the interviewers. Nonetheless, absent appropriate de-
contetualization, participants did not abstract concepts mathematically or 
reason logically beyond their personal experience.

Logical Reasoning

 In addition to their struggles with contextualization, students evinced 
difficulties with logical reasoning similar to those reported in earlier stud-
ies (Austin, 1984; Damarin, 1977a, 1977b; Vest, 1981). To organize the 
justifications given by participants we used a schematic diagram method 
of Krummeheur (1995) based on Toulmin’s (1958) reasoning categories. 
These “Toulmin diagrams” allowed a compact view of a student’s reason-
ing efforts.  The content of each diagram was derived from the assumptions 
or data, the conclusions, the warrants, and the backing offered by the inter-
viewee. It was evident in the interviews that chunking of complex sentences 
into smaller pieces (“data”, “conclusions”, “warrants” and “backing”) was a 
key strategy for sense-making for all five participants.
 The diagrams were especially  helpful in comparing students’ justifica-
tions as they voiced their resolution of conflicts between “everyday think-
ing” and logical deductive reasoning. Three areas of difficulty arose for 
student participants:

Conflict about whether the antecedent was plausible and necessary, 
sufficient or temporally related to the consequent.
Context-dependent semantic disequlibrium from differences between 
natural and mathematical language meanings.
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Struggles with the constraints of personal and sometimes idiosyncratic 
appears to “equation” as a means of interpreting implication.

 Ruby experienced conflict about whether the antecedent was a plausible, 
possible, or unique cause of the consequent and attempted to resolve it with 
an appeal to set theory. Ruby introduced the concept of set and related it to 

Figure 1a. Ruby’s reasoning for her answer of “Not necessarily” on Item 29: “Suppose X 
imples Y. Suppose X is false. Is Y false?”

Figure 1b. Ruby’s Venn diagram for XY.
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the conditional statements in Item 29 when she explained, “I could say ‘X 
is a part of Y, suppose X is false. Does that mean that Y is false’? No, that’s 
not necessarily true.” Her argument is depicted in the Toulmin diagram 
show in Figure 1a. In her approach, Ruby used the traditional mathematical 
Venn diagram representation (see Figure 1b) for a conditional statement, 
where “X implies Y” is equivalent to “Y is necessary for X” and is repre-
sented as “Y contains X.”
 Jack experienced conflicts similar to Ruby’s about both the necessity and 
the temporally uniform nature of a consequent in attempting to determine 
the truth-value for a conditional statement, even after some discussion about 
its antecedent. For example, on the questionnaire instrument, for Item B, 
Jack had answered “Not enough information.” However, during the inter-
view,  Jack decided to change his answer to “No” because “we don’t know 
what kelevs, if they still dringle...” Jack’s use of the word “still” is an ex-
ample of his reliance on temporally-laden interpretations. In the subsequent 
interview conversation, the interviewers gave several examples of the same 
form as Item B, (i.e., natural language examples equivalent to: “Consider 
the statement ‘X  Y’. Suppose we know that X is false, is the statement 
‘X  Y’ true?”) For each of the natural language statements presented by 
the inverviewers, Jack paid attention to the conflict between plausible-cause 
and effect reasoning and possible-cause and effect reasoning. He even gen-
erated an example to illustrate this conflict: “If it’s raining, you’re gonna 
get wet. But you can go swimming and get wet too.” Jack also talked exten-
sively about “the relation” between the antecedent and the consequent. He 
attempted to clarify this concert of “the relation” by comparing Item B with 
the following temporally-limited (“Today”) example:

If water is poured on us, then we get wet. Today water is not poured on 
us. Is the first statement true?  Yes? No? Not enough information?

Jack explained that there was not enough information:

Being wet is not dependent on water being poured on us. It can be for 
other reasons....What I’m saying is that there’s not enough information 
because, as we said, we don’t know if, you know, as we said, that’s not 
the only reason somethin’ can happen. The reason I was saying’ that 
with the other one [Item B] is...We don’t know, I mean, ...if all, if this 

then all of these. Then we can assume there’s a relation between glim-
merles and kelves because of the ‘all.’

 This passage illustrates the word “all” in Items B may have been piv-
otal in Jack’s understanding of the problem. For Jack, the phrase, “then all 
kelevs dringle” indicated what he called a “direct relationship” between all 
glimmerles and all kelevs: the action of all kelevs was uniquely caused the 
by previous (in time) action of all glimmerles (see Figure 2).
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 Ruby came to the same conclusion as Jack, not necessarily true or false, 
when interviewers presented variations of Item B in various forms of lan-
guage (nonsense, natural, and mathematical). However, when discussion 
shifted to items of the form “Consider the statement ‘XY’ and suppose 
we know that Y is false, is ‘XY’ true?” Ruby came to the conclusion that 
“XY” was not true. Ruby first appealed to set theory, but abandoned it and 
decided that if the consequent was given as false, then there were no pos-
sible antecedents or causes that would make the conditional statement true. 
She clearly identified the truth of a conditional statement with its conse-
quent: for Ruby there was no difference between the truth of the statement 
“X Y” and the truth of the proposition Y (see Figure 3).
 Note that all of Ruby and Jack’s conclusions (in Figures 1, 2, and 3) de-
pended on whether the consequent could be judged true. Rudy and Jack did 
not consider the entire implication as an object, as a statement itself. They 
looked to the consequent to determine truth-value.
 Amy, like Ruby and Jack, first concentrated on the truth-value of the 
consequent. However, when Amy was prompted to look at the conditional 
statement in Item B, her answer changed (from the “Not enough informa-
tion” that it had been when she first completed the questionnaire, to “Yes” 
the conditional statement was true): 

Figure 2. Abbreviated representation of Jack’s reasoning for “Not necessarily” on Item B and 
several items like it.
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Yes. Because when it says if-then, it doesn’t necessarily have to be true. 
It’s just saying the could be, but if it just said ‘glimmerles are flondish’, 
that’s like a definite statement ... like the statement in quotes is a pos-
sibility and then the next sentence gives like a definite statement.

Amy’s argument, shown in Figure 4, altered to the argument in Figure 4 
when the wording of the conditional statement was changed from “If glim-
merles....” to “Whenever glimmerles are flondish, all kelevs dringle.” Amy 
changed her answers to “No,” the conditional statement in quotes was false, 
because: “I would answer ‘no’ because we say ‘whenever.’ It means it does 
happen sometimes... but it you say ‘if,’ then it means it could happen, it 
could not.”
 The use of the word “whenever” might have generated a context-depen-
dent semantic conflict for Amy. She appeared to be using the temporally-
constrained natural language definition (for her) of the word “whenever” 

Figure 3. Ruby’s reasoning on the question “Consider the statement ‘X implies Y.’ Suppose 
Y is not true. Is the statement ‘X implies Y’ true?”
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Figure 4. Amy’s reasoning on the question: “Consider the statement ‘If glimmerles are flond-
ish, then all kelevs dringle.’ Suppose we know that glimmerles are not flondish. Is the state-
ment in quotes true?”

rather than viewing it as a synonym for “if” as is commonly done in math-
ematical contexts. Also, in discussing symbolic context, Amy noted that us-
ing X, Y, or Hebrew letters instead of nonsense words might result in wrong 
answers not because the relationships within the conditional statements had 
changed but because “the person ... might be confused by it.”
 Linda, on the other hand, had quite different difficulties from those ex-
hibited by Margaret, Amy, Jack, and Ruby. The depth, breath, and connect-
edness of Linda’s mathematical understandings appeared to be quite sparse. 
Several times during her interview, she appealed to another mathematical 
context, arithmetic, in attributing properties to logical statements. In dis-
cussing Item B, Linda said that the statement in quotes was false because 
she saw a contradiction within the prompt. First, for Linda, the statement “If 
glimmerles are flondish, then all kelevs dringle” indicated a “definite state-
ment” (borrowing from Amy’s vocabulary), an authoritative assertion that 
glimmerles are flondish and that no glimmerles could exist that were not 
flondish. So, for Linda, the next statement in the problem, “glimmerles are 
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not flondish” created an irresolvable conflict. She concluded that the first 
statement was false because the second statement came second and by tem-
poral precedence modified the truth of the first. It is also worth noting that 
Linda said, “I just figured that [if] glimmerles are flondish, then all kelevs 
dringle and if they are not flondish then the kelevs don’t dringle.” This is 
a very explicit example of an inversion error, namely assuming that, given 
“XY: and given “notX,” that “notY” follows.
 In Figure 6, Linda’s comments have been compacted into logic notion to 
illustrate her reasoning. Instead of taking the conditional statement and the 
second statement as separate entities, she grouped them into one statement 
and allowed the equivalent of algebraic distribution to act. This led to her 
justification that “notX and X” cannot be true.
 Linda relied on the context of an algebraic or “equation” understanding 
of implication several times. For example, when discussing the following 
item,

Suppose that if X is true, then Y is false. Suppose that Y is false. Is X 
true? (Yes) (No) (Not Necessarily)

Figure 5. Amy’s reasoning on the question: “Suppose that whenever X happens, then Y hap-
pens. Suppose X does not happen. Is the statement ‘whenever X happens, then Y happens’ 
true?”

notX contradicts
“whenever X”
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Linda explicitly referred to algebraic operations on equations as justification,

I guess I did it because X is true here and Y is false here and Y was true 
here, so I figured X would be false there ... I just switched around. Like 
if X is true, Y is false ... That’s the kind of thing like if you do a thing 
to one side you do the same to the other, like in Algebra.

It could be argued that Linda treated a conditional statement as bicondition-
al, making what Jansson (1975) called a “converse error.” Her explanation 
suggests that she saw the implication as an equality and attributed algebraic 
properties to the implicative “sides” of the conditional statement (in the 
case mentioned above, the equivalent of multiplying both sides of an equa-
tion by –1).  Linda appeared to be in the habit of assimilating new structures 
(like symbolic logic and implication) into her existing mathematical under-
standings of arithmetic and algebra.
 Although there were no formal proofs in the Mathematics for Elemen-
tary Teachers course all participants took, class activities included student 
use of logical reasoning in elementary set theory and geometry (e.g., “all 
squares are rhombuses”). A striking example of reasoning in the classroom 
that exemplified the personalization and contextualization inherent in the 

Figure 6. Linda’s reasoning on the question “Suppose X implies Y. Suppose X is not true. Is 
the statement ‘X implies Y’ true?”

notX contradicts
“X  Y.”

notX  (X  Y) means
the same thing as
(notXX)  Y, and
notXX cannot be true
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use of natural language arose around the ideas of intersection and union. 
Given a two-circle Venn diagram and asked to represent the intersection of 
the two depicted sets, A and B, students were almost uniformly successful 
in shading the intersection on the diagram. However, when given a three-
circle Venn diagram of mutually intersecting sets A, B, and C, and again 
asked to share the intersection, AB, and students sketched (AB) – C and 
offered the explanation: C was not mentioned, so it “must be” and “makes 
sense” that C is the excluded. Similarly, when asked to sketch AB) stu-
dents often shaded in (AB) – C. The explanations students gave about 
their choices for shading were suggestive of personalized contextualization 
and what it might be “reasonable” to assume in a “real-world” context. For 
example, if it were known to all that Pat had apples, bananas, and carrots 
at home and that Pat said to guests “Would you like apples or bananas?” 
a common, reasonable assumption would be that Pat was choosing to ex-
clude carrots from the offer to guests. That is, students’ sometimes-helpful 
reliance on their everyday experience and natural language use could lead 
to invalid conclusions. So, we can say with some confidence that the math-
ematical reasoning behaviors noted in the interview-based study presented 
here were at least partly reflected in the reasoning activity of the larger 
group of all students in the mathematics classroom. Moreover, when the 
instructor compared the mathematical sophistication among students in the 
course (and several hundred students in subsequent iterations of the course) 
to the collection of students interviewed, he noted that in his experience the 
course) to the collection of students interviewed, he noted that in his experi-
ence the course’s typical mix was 20% very comfortable and fairly adept at 
the use of standard mathematics language, symbols, and processes, another 
20% extremely uncomfortable and unlikely to consistently engage with the 
same, and 60% who were adept or aware of mathematics to varying degrees 
with varying levels of comfort. The five interviewees were “representative” 
of the students in the course in the sense that Jack was in the first 20%, 
Linda in the other 20% group, and Amy, Margaret, and Ruby in the 60% 
in the middle.
 What is more, on the questionnaire the responses of the five students who 
were interviewed were typical of all students who completed the written 
survey. Although quantitative data analysis is still underway, preliminary 
observation include noticing that the five students were like the entire group 
in having the greatest difficulty with the nonsensical items (31% correct 
responses). Overall, student performance on the symbolic and natural lan-
guage items was about the same ( 48% correct on symbolic items, 52% cor-
rect on natural language items). Thus, as was indicated in most participants’ 
interview statements, the nonsense language items were “hardest,” with the 
symbolic items next in difficulty, and the natural language items “easiest.” 
When the complete analysis is done using a full data set, no doubt the final 
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percentages will change somewhat. It is plausible, however, that this pattern 
might remain for the complete data set.

Discussion

 In her book Children’s Minds, Donaldson (1979) presented a theory of 
how children acquire language. Donaldson asserted that humans acquire 
knowledge of language through their abilities to hypothesize, test, and rea-
son to interpret context-rich individual situations. In order to effectively 
use language to communicate, we need to learn the semantics and syntax 
of language. However, according to Donaldson’s theory, we have to con-

textualize the language being used in a situation first, then gradually under-
stand, elicit, and abstract meaning. Once one has the individual meanings of 
enough words, she argued, one gains a better understanding of the context 
of the situation being described.

Context, Personal Perceptions, and Temporal Connections

 For the five prospective teachers interviewed, the ability to contextual-
ize language appeared to be critical to understanding and responding to the 
questionnaire and to the interviews. However, without some facility with 
decontextualization, participants did not abstract concepts mathematically 
or reason logically beyond their personal experience. Moreover, deperson-

alization was largely absent from their discussions. All interviewees said, in 
one way or another, that it was important to be able to visualize or imagine 
an actor for each action. For this reason, they appear to have felt more com-
fortable with the natural language examples where actors and actions were 
clearly delineated (e.g. Susan baking a cake).
 The ability to detemporalize, separate time from reasoning, even in the 
natural language context, was rare among the five participants. Students 
regularly determined the meaning of a conditional statement by using the 
word “when” in their justification. The very nature of an “if” statement 
requires the hypothesizing of an antecedent without reference to time. The 
subsequent use of “then” in a conditional statement introduces an ordering. 
The natural language use of “then” may call to mind temporal dependence. 
Mathematicians are, in fact, rather loose with their use of time-related natu-
ral language words in creating mathematical argument. However, they are 
participating in a collection of semantic practices that presumes detempor-
alized objects, relations, and operations. 

Relation to Belief-Bias Literature

 The students in this study were struggling to come to grips with the time-
lessness of logic. Linda applied everyday temporal rules in that whatever 
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came last in the order written, was the current state of things. As indicated 
in Figure 6 and the discussion leading up to it, the last thing she had read 
before she was asked “is XY true?” was that X “can’t happen” so it made 
no sense to her to ask if Y could make something else happen if X itself 
“couldn’t happen at all.” Temporal ordering (things happening to cause 
other things) appeared to contribute to her conclusion. Linda’s pragmatic 
view may be comparable to the “logic-like” approach reported in the cogni-
tive science and belief-bias models theory as “matching heuristics.” In her 
approach, Linda first attempted to parse each statement. If she could not 
comprehend it, she stopped. If she could, then she appeared to look for a 
connection to something she already knew that might resemble the prompt 
(perhaps only superficially) in order to give her solution. In matching heu-
ristics theory, temporal cues are significant deciders of solution response, 
equally as important as surface structure. Linda appeared not to engage in 
any of the three strategies, though she came closest to engaging in decon-
textualization and seemed most resistant to depersonalization and detem-
poralization.
 For Jack, in discussing the dringling kelevs, his first strategy was re-

contextualizing (by comparison to a science fiction context) rather than 
decontextualizing. Eventually, he negotiated with himself to the point of 
decontextualization to symbols in dealing with nonsense language items. 
Throughout his interview, Jack referred to the necessity of personal rel-
evance and temporal validity. In the language of the “mental logic” model 
(Rips, 1994), Jack’s decontextualizing efforts with snarkoids and holovoos 
were content-free (since he asserted the words had, in fact, no meaning 
for him) and he attempted to map them onto a mathematics context where 
he knew the transformational rules for symbolic implication. The nonsense 
language “input” was treated as if a meaningful premise and conclusion ex-
isted and a symbolic logic scheme was applied to its interpretation in order 
to produce the “output” of the answer.
 Ruby and Margaret appeared to engage in depersonalization first, with 
sporadic appeals to detemporalization (discussing relations between con-
cepts and processes rather than their temporal ordering), before attempt-
ing decontextualization with nonsense language items. On mathematical 
language items, however, each appealed to decontextualization but did not 
engage in the kind of detemporalization efforts apparent in their discussions 
of nonsense language items. Mathematical language was already a fairly 
abstract context for Ruby and Margaret, so decontetualization may have 
been the more efficient strategy choice. In the language of “mental models” 
theory (Johnson-Laird, 1985), Ruby and Margaret were deriving inferences 
from the action of a known, context-free, logical model rather than attempt-
ing to use an contextually-based inferential processes.
 Finally, Amy, like Ruby and  Margaret, was most immediately able to 
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depersonalize her responses. She also appealed to detemporalization in her 
dealing with natural and nonsense language items. However, that detem-
poralization disappeared when the word “whenever” was introduced into 
discussion. Her new strategy became personally informed and temporally 
rich while starting to involve decontextualization (e.g., her comment that 
using X, Y, or Hebrew letters could cause sufficient confusion to result in 
incorrect reasoning).

Reasoning Situation Image

 It may be that depersonalization, detemporalization, and decontextualiza-
tion strategies are engaged, perhaps not consciously, based on expediency 
in a given reasoning situation. Personal affective factors like the risks of 
self-concept of being seen as wrong, confused, or unclear felt by the partici-
pants may have contributed to the dynamic development of their reasoning 
strategies in the interview situation. All five interviewees commented that 
the amount of familiarity they felt with the content and with the inferential 
processes in a discussed item was a significant factor in how they chose to 
approach reasoning through it. So, in addition to evolving perceptions of 
the reasoning situation itself, familiarity with mathematics, logic, and de-
ductive structure as well as experience with inferential processes may have 
been components in strategy decisions.
 The less familiar a participant was with the language or reasoning in-
volved, the more likely he or she appeared to be to change strategies fre-
quently (Amy, Jack, Margaret, Ruby) or to suspend making any strategy 
choices at all (Linda). Differences in personal experience and perception 
among the participants may mean that an expedient strategy choice for one 
person in a given situation would not have been expedient for another.
 If such a thing as a reasoning situation image exists, it is much like a 
concept image (Tall, 1992) or a problem situation image (Selden, Selden, 
Hauk, & Mason, 2000). A reasoning situation image would include an def-
initions of logical inference and rules for deductive reasoning held by a 
learner. However, the connections between the formal definitions and what 
the learner understands about those formal definitions (their pseudo-defini-
tions) may be weak or non-existent. A thin thread of connection might eas-
ily snap when a learner is confronted with a complex reasoning task. The 
nature of the reasoning situation image activated, particularly the robustness 
of its interconnections, might be influential in strategy choices. The contex-
tualization and semantic processing efforts of the five preservice teachers in 
this study leads to the suggestion that a reasoner’s dynamic strategy selec-
tions are made depending on the affective and cognitive loads associated 
with the situational factors (i.e., nonsense language, written vs. oral, level of 
pertinent personal experience), context, and task content. As noted in brain 
imaging research, valid syllogistic reasoning seems to be related to disen-
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gagement of affect and focus on cognition. Depending on personal history, 
differing affective and cognitive demands may be involved in decontextual-
ization, depersonalization, and detemporalization for different people.
 It may also be that a person’s proof scheme (Harel & Sowder, 1998) is 
linked to (if not completely subsumed by) her or his reasoning situation 
image(s). The comparative-conflict reasoning efforts reported on here in-
dicate that perhaps structuring the relationships among reasoning situations 
(and recognizing that there are multiple salient  images) is one of the great 
challenges in coming to understand proof.

Conclusion

  The analysis of the five prospective teacher interviews suggests that at 
least some students do not understand the precision intended in standard 
mathematical language, especially as it relates to logical reasoning. Some 
students may recognize neither the “logical form” or statements (that is, 
equivalence with one of the symbolic forms), nor logical reasoning patterns 
(e.g., “AB” is equivalent to “notBnotA”). Thus, they may seek other 
avenues to glean meaning, using a variety of ad hoc methods to decipher the 
language and structure given them and may or may not effectively decon-
textualize, depersonalize, or detemporalize their interpretative approaches.

Implications for teaching

 The mathematical community has long recognized the need for all teach-
ers of mathematics to understand and promote logical reasoning and proof 
as fundamental aspects of mathematics. But how can we expect students, 
prospective K-12 teachers in particular, to embrace reasoning and proof as 
a fundamental part of their mathematical thinking, if they do not first have 
the ability to use the language of logical reasoning when describing and dis-
cussing mathematics? As has been hinted at in the Mathematical Education 

of Teachers (MET: Conference Board of the Mathematical Sciences, 2001), 
we suggest that the development of students’ understanding of reasoning 
and proof as fundamental to all mathematics is partly a process of encul-
turation. That is, of helping learners to an explicit awareness of and facil-
ity with the collection of cognitive, symbolic, linguistic, and physical tools 
that are part of the culture of Western mathematics. Specifically, helping 
students learn to identify and move between “real-world” and mathematical 
repertoires when thinking, speaking, and writing. As is noted in what fol-
lows, what we suggest is driven by the NCTM (2000) Process Standards, 
in particular the Reasoning and Proof, Communication, Connections, and 
Representations Standards, and is responsive to Recommendations 3 and 4 
of the MET report.
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 The NCTM Communication Standard has the goals that students “com-
municate their mathematical thinking coherently and clearly to peers, teach-
ers, and others” while also being able to use communication tools to “or-
ganize and consolidate” their thinking. The Connections Standard points to 
the importance of using mathematical ideas to move among mathematical 
contexts and to relate mathematics and real-world contexts. Towards these 
ends, instructors can help learners distinguish between the repertoire of use 
for everyday language and that for mathematical language. Statements of 
the form “if...then...” are ubiquitous in advanced mathematics instruction 
and conditional statements are second nature to those trained in mathemat-
ics. The use of conditionals includes indirect forms such as “all squares 
are rectangles” (instead of “if an object is a square, then it is a rectangle”). 
Many, if not most, high school, college, and university instructors may as-
sume their use of conditional statements to explain concepts is understood 
in mathematically (de)contextualized ways by students. However, an un-
derstanding of those explanations is also dependent upon the audience in 
question. When the audience consists of prospective elementary teachers, 
will they understand mathematical language in the ways intended by their 
instructor? The evidence suggests that for many leaners in this audience 
an understanding of mathematical semantics and logical processes requires 
more than is offered by current instructional practice.
 In particular, explanations offered by instructors could include opportu-
nities for students to become aware of, examine, and enrich their abilities to 
decontextualize, depersonalize, and detemporalize in reasoning situations. 
Instructors can foster student awareness by explicitly stating to students an 
intention to help learners shift their attention from using language and argu-
ment structures situation in what are, for the leaners, “real-world” contexts 
to the more abstract symbols and structures of logic common in the world 
of mathematics. This could begin by having students consciously and pur-
posefully contextualize, personalize, and temporalize some mathematical 
content. Additional classroom activity could have students practice with 
equally intentional work aimed at maintaining meaning while eliminating 

context, personal, and temporal dependencies (one or several at a time). 
Such practice could be enacted in the college classroom through exercise 
like those on the questionnaire (Appendix), which offer opportunities for 
students to investigate the contextualized, personalized, and temporally-
laden nature of everyday reasoning and compare it to the abstracted meth-
ods of logico-deductive reasoning.
 A student who has developed the ability to decontextualize may more 
readily divorce the processes of reasoning from a reliance on what is com-
fortable and familiar. Students who understand and can use detemporal-
ization, that is, those who can separate linguistic time-cues from logical 
reasoning, can side-step the habit of apply temporal rules to the meaning 
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of mathematical statements. Learners who are able to consciously identify 
when it is appropriate to depersonalize can distinguish between logical pat-
tern and what they know to be true “in the real world” (e.g., statements 
about green colored cats flying or statements containing assertions with 
which they personally disagree) without affective overload and cognitive 
disengagement.
 Given these observations, the findings of this study may be applied to 
mathematical instruction for preservice elementary teachers in several 
ways. Paths to improvement include a variety of discursive, reflective, and 
investigative methods. Again, we emphasize that the development of un-
dergraduates’ appreciation and understanding of reasoning and proof is an 
overt process of enculturation. We are not asserting that assimilation is the 
goal; rather, we refer to enculturation as the process of adding cultural com-
petence in mathematics, and in reasoning and proof in particular, to existing 
culturally-informed competencies. Thus, opportunities for discussion, re-
flection, and investigation of the norms for applying logic in Western math-
ematics would need to be explicit and incorporated into every lesson.
 Instructional activities can be designed for helping students decontextu-
alize, detemporalize, and depersonalize. Initial exercises could incorporate 
sample sentences that are non-mathematical in content and use symbolic 
representation, English words, and “nonsense” words. In translating from 
words to symbols, students are meeting the Representation Standard goal of 
“creating and using representations to organize, record, and communicate 
mathematical ideas” Students can be systematic analysis of items such as 
those on the questionnaire used in this study. A follow-up assignment, after 
solutions are shared with the students, can then have learners give written 
explanations as to why any incorrect answers they or classmates have given 
are logically inconsistent with the prompt(s). Students can learn to re-trace 
and explain the reasoning they relied upon, carefully explaining the steps 
in their reasoning, as a way of strengthening connections within reason-
ing situation images. In doing so, they will be evaluating the mathemati-
cal thinking and validating the strategies of themselves (and if papers are 
exchanged, of others), part of the NCTM Reasoning and Proof Standard. 
Identifying context, personal relevance, or time-based connections and ar-
ticulating them explicitly could be a first step in differentiating between 
the empirically-based reasoning of daily activity and the logico-deductive 
methods central to reasoning and proof in mathematics.
 The same types of assignments (solving, revisiting, and analyzing) could 
be given to students in other formats. For example, a set of questions simi-
lar to those in the questionnaire used in this study might be set up in “mix 
and match” two-column format in which each statement in the first column 
must be matched with its logical equivalent in the second column. A more 
advanced assignment could require students to design activities that they 
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believe will help their future elementary students in the upper grades learn 
to avoid pitfalls in reasoning. Such problem-posing, in addition to problem-
solving, has been found to be quite powerful in the instruction of pre- and 
in-service teachers (Pirie, 2002; Sowder, Phlipp, Armstrong, & Schapelle, 
1998).
 Opportunities exist before, during, and after students work on such as-
signments for instructors to highlight common challenges, or emphasize 
certain contrasts explicitly. For example, it may be worthwhile to repeat-
edly state and illustrate with examples that AB is not the same as BA 
and that one may be true without the other being true. Another area to un-
derscore is the fact that decisions regarding the truth-value of the individual 
components of antecedent A and consequent B are distinct from questions 
about the truth of the single compound conditional statement AB.
 Moreover, potentially counter intuitive mathematical statement such as

AB is true in all cases where A is false
can be discussed in terms of the contextual, personal, and temporal under-
pinnings of the conflict between the multi-valued plausibility-based logic 
of daily experience and the two-valued logic commonly used in Western 
mathematics (Durand-Guerrier, 2003). Instructors may wish to review the 
logically equivalent from “notA or B” which is sometimes used to define 
“AB.” This format may not only assist students with decontextualization 
and detemporalization, but may help them gain in understanding for why 
such counterintuitive results do hold in two-valued logic.
 It may be fruitful to explore additional variations on statement types and 
context scenarios. For example, would students have less confusion over 
the idea that “AB is true in all cases where A is false” and correctly assign 
“True” to such variations as “If we are in a universe where a false state-
ment like ‘4 is an odd number’ is true, then it can be concluded that 1+1=3 
is also true.” In other words, would the truth of the conditional statement 
“Something False  Something False” more frequently be recognized by 
students who have had practice with such examples? The work of Durand-
Guerrier, (2003) suggest so. What if “1+1=3” is replaced by “1+1=2”? 
That is, would examining instances of the conditional statement wherein 
“Something False  Something True” help students move more readily 
from Balacheff’s (1988) naive empiricism to the abstraction of thought ex-
periment? By giving students a rich experience with analyzing conditional 
statements, counterintuitive ideas and associated explanations might be-
come more richly connected in students’ reasoning situation images.
 Class discussions or writing assignments of several types could be quite 
useful. Again, responding to the recommendations in the NCTM Commu-
nication Standard, students might be asked to identify and verbalize the dif-
ficulties they are experiencing with the semantics of the course, especially 
those related to logical phrasing and patterns of reasoning. Discussion or 
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journaling could also be used to address confusions or contextually, person-
ally, or temporally-based conflicts with which students may be grappling. 
However, it is important to note that instructor feedback or classmate feed-
back is an important part of making discursive and written assignments ef-
fective in a mathematics course (Steinbring, Bartolini Bussi, & Sierpinska, 
1998; Sterrett, 1992).
 Writing assignments and oral presentations by students to students could 
showcase personal experiences of coming to an understanding of logico-
deductive reasoning. Students’ sharing the levels of mathematical maturity 
and comfort they have reached can serve as an assessment tool for both 
students and instructors.
 Research in mathematics education which focuses on mathematical log-
ic, mathematical reasoning, and particularly on conditional statements, can 
be assigned as reading. Follow-up discussions, writing assignments, high-
lighted pitfalls and examples, and instructional activities as outlined above 
can then build upon and solidify what students have read and learned.
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