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Abstract 
This study investigated the influence of regular structured writing about problem solving 

on college algebra students’ locus of control, flexibility of articulation, and accuracy in 
responding to written problem tasks. The writing assignments, acronym PSOLVE, provided 
students a framework for expressing their thoughts about mathematical actions, processes, 
structures, and language. Given that augmenting traditional college algebra classes with the 
PSOLVE writing assignments resulted in statistically significantly higher scores on routine 
problems on the common post-test (p < 0.05), we examined PSOLVE and non-PSOLVE 
students’ written mathematical justifications in response to mildly non-routine short-answer 
items on the same post-test. PSOLVE students’ post-test explanations were clear and 
mathematically consistent. The PSOLVE writing assignment appears to be a useful support for 
growth of declarative and procedural knowledge as well as an effective conduit for the instructor 
to gain insight into students’ thinking. We discuss potential benefits of the PSOLVE 
augmentation for the development of research and practice in college mathematics teaching.  



  

Fostering College Students’ Autonomy in  
Written Mathematical Justification 

Language is acknowledged as important in coming to understand mathematical concepts 
(Esty, 1992; Morgan, 1998; National Council of Teachers of Mathematics, 2000). Writing across 
the curriculum and writing-to-learn studies have indicated that the more that material is 
manipulated through writing, the more it is likely to be remembered and articulated (Gopen & 
Smith, 1990; Langer, 1992; Pugalee, 2004). When students write about mathematical concepts 
they attend to both the content and to their understanding of it (Morgan, 1998; Williamson & 
McAndrew, 1987). Engagement in reflective problem-based questioning has been indicated as a 
way to enhance mathematics learning in several settings (King, 1994; Mevarech & Kramarski, 
2003; Schoenfeld, 1992).  In particular, Mayer (1980) demonstrated that in the case of simple, 
one sentence, word problems in algebra, the view of problem solving commonly held by K-16 
instructors – first translate, then solve – was not effective for student learning.  Rather, working 
on algebraic word problems requires a synthesis of translation and reflection abilities. Some have 
argued that the writing process itself may activate cognitive and meta-cognitive engagement with 
mathematics that supports problem solving, particularly for strategizing in a novel problem 
situation (Baker & Czarnocha, 2002).  

The stability of lecture-based teaching assumptions in college mathematics service 
courses such as college algebra, liberal arts mathematics, and mathematics for prospective 
elementary school teachers makes wholesale implementation of writing-rich problem-based or 
activity-based learning at the college level a challenge. Nonetheless, the view in K-12 education 
that successful teaching is evidenced by student learning of procedural and conceptual 
knowledge has made inroads in college settings. The national average of a 30% to 50% failure 
rate in college algebra courses is some indication that a shift to more constructivist approaches in 
college mathematics service course teaching may be appropriate – or at least, may be unlikely to 
make things any worse (Small, 2002). One method for encouraging construction of meaningful 
understanding about mathematics, even in an otherwise lecture-based course, may be through 
students writing about their mathematical problem-solving and receiving feedback from their 
instructors on that writing (Gopen & Smith, 1990; Hiebert & Carpenter, 1992; Morgan, 1998). 
Both transactional writing (writing to communicate) and expressive writing (reflections on 
perceptions) are important facets of developing articulation in mathematics (Borasi & Rose, 
1989; Clarke, Waywood, & Stephens, 1993; Fennema & Romberg, 1999). However, do 
reflective examination or transactional writing increase students’ performance in meaningful use 
of declarative and procedural skills?  How might such writing about mathematics problem-
solving play a part in students’ conceptual understanding?  

Many researchers have addressed these questions, in a variety of elementary, secondary, 
and tertiary settings, using myriad theories of learning (Drake & Amspaugh, 1994; Langer, 1992; 
Morgan, 1998; Porter & Masingila, 2000; Pugalee, 2004; Shepherd, 1993). At the college level, 
one apparent anomaly is the study of college calculus students by Porter and Masingila (2000). 
They attempted to characterize the differences in mathematical understanding between students 
in a class using writing prompts for explaining concepts and those in a class using discussion 
prompts for the same topics. The authors reported no significant differences in procedural or 
conceptual understanding between the two groups. Most of the students in Porter and 
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Masingila’s study had taken calculus in high school and were already familiar with a wide range 
of algebraic concepts, basic calculus terms, and skills. By comparison, a similar study among 
high school algebra students (Pugalee, 2004), indicated a statistically significant difference 
between groups. The students who used writing (rather than only discussion) did better on both 
routine and more complex problems. The students in Pugalee’s study were not experienced with 
the language, symbol sets, and representational standards of algebra. That is, among the notable 
differences between the two studies was the level of familiarity with mathematical representation 
and communication by the students.  

Like Porter and Masingila’s calculus students, college algebra students have taken the 
course in high school (e.g., second-year high school algebra). However, college algebra students 
tend not to be pursuing science, mathematics, or engineering degrees and are unlikely to have the 
same collection of mathematically-rich science course experiences as calculus students. In fact, 
because many college students in mathematics service courses may have long struggled with 
mathematics – experiencing it as a mystifying collection of disconnected rules to be memorized 
(Ellsworth & Buss, 2000; Hauk, 2005) – they may be more like Pugalee’s participants. 

Though there are policy statements about the value of writing in college mathematics 
services courses, there is little research on the nature of the influence of out-of-class writing 
about problem-solving among college algebra learners. Can college algebra students, and their 
teachers, benefit from students writing about their mathematical efforts? In what way(s)? In 
particular, the question investigated by this study was: What is the nature of the benefit (if any) 
to students and teacher if traditional lecture-based instruction in college algebra is augmented by 
structured regular, outside of class, writing assignments about problem-solving?   

As has been the case in other studies, we included a pre-test/post-test statistical 
comparison of performance on routine problems (i.e., items involving direct application of 
procedures and skills) and non-routine problems (i.e., items requiring strategizing, planning and 
execution of multiple steps, or explaining a new method for solution). The focus in this report is 
on the nature of the conceptions communicated by students on a particular non-routine problem 
and the ways in which this communication may be beneficial.   

Prior to this study, the second author created and piloted a rubric of prompts for the 
written analysis of problem situations by college learners. For this study, we implemented it in 
college algebra.  In preparing the writing rubric and designing the research, key theoretical 
influences included constructivist assumptions about the importance of autonomous thinking and 
communication (von Glasersfeld, 1989), the nature of constructed understanding as a process of 
interiorization, condensation, and reification (Sfard, 1992), and the dynamic transitions among 
types of mathematical understanding (Pirie & Kieren, 1994). 
Theoretical Perspective and Framework 

The epistemological foundation for the study had two grain sizes. On the scale of 
cognitive theory, the work was informed by the constructivist model of Sfard (1992). Sfard’s 
three stages – interiorization, condensation, and reification – in the learning of mathematics 
concepts may be used to understand the dualistic nature of procedural and meta-cognitive efforts 
in transactional writing about mathematical problem-solving. Interiorization of repeated 
calculational actions into meaningful procedures may be facilitated by asking students to 
generate examples and express definitions in their own words (Hiebert & Carpenter, 1992). 
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Condensation and interconnections among the processes involved in a concept (e.g., factorization 
and the zero product rule in college algebra) may be supported by students’ meta-cognitive 
efforts to explain how they arrived at their answer and to examine and report on the cognitive 
links between steps in their problem-solving process. Reifying, or organizing related 
mathematical ideas into a cognitively cohesive structure (a schema), also may be facilitated by 
writing, especially if the writing prompt calls for such structuring explicitly. For example, 
interconnected structuring of declarative, procedural, and conceptual knowledge may be 
promoted by asking the writer to reflect on and discuss why the problem might be assigned and 
to examine how a particular problem is related to others by creating another, similar, problem 
whose solution would be arrived at by using the same general method. In particular, conceptual 
and meaningful procedural understanding may be developed through assignments that call for 
problem-posing about the concepts in question (Pirie, 2002). However, writing assignments 
employed without teacher engagement and feedback have not proven any more useful to either 
students or teachers than traditional mathematics assignments (Gopen & Smith, 1990; Hirsch & 
King, 1983). Also, as von Glasersfeld (1989) noted, for communication between mathematical 
expert (teacher) and novice (student) it is important that a shared lexicon for translation exist, 
otherwise “teaching is likely to remain a hit-or-miss affair.”   

The time frame under consideration was relatively short (one semester), so the work was 
also informed by a finer-grained theory. On the scale of examining individual student efforts at 
constructing understanding, we relied on Pirie and Kieren’s (1994) eight-layered model, along 
with the dynamic of “folding back” among layers. The evidence for comparing the growth of 
reflection and autonomy among students relied heavily on qualitative analysis of students’ 
written work on pre- and post-tests using the nested components to Pirie and Kieren’s recursive 
theory (see Figure 1).  

The inner-most four layers are unlikely to be clearly articulated by a learner, though the 
shadows of activity at these levels, especially the outer two, may be evidenced in the content  
and focus of student utterances. In Primitive Knowing the word primitive “does not imply low 
level mathematics, but is rather the starting place for the growth of any particular mathematical 
understanding. It is what the observer, the teacher or researcher assumes the person doing the 
understanding can do initially” (Pirie & Kieren, 1994). Image Making is the state of creating an 
internalized image: a representation that can be used in place of something that once may have 
been in the learner’s perceptual field. The result is a state of Image Having, where the 
constructed image is accessible and comparisons to it can be made. Property Noticing is doing 
just that: noting properties of a collection of facts, a procedure, concept, image, or problem 
situation. Unlike the less clearly articulated inner four levels, the outer four levels typically can 
be talked about by college learners (though with struggle at times).  In Formalizing the learner is 
first able to clearly discuss in detail the properties noticed at the previous level. Observing 
involves comparisons and contrasts - analysis - of formalized understandings. With Structuring 
comes synthesis of observations. The outermost layer, Inventizing, includes the capacity to create 
new ideas (invent) and connect together old ideas in new ways that are based on previous 
understandings, but are not constrained by them.  
 Progress through the framework for a student tackling a problem task may be highly non-
linear. A student attempting to formalize understanding may struggle with articulation to such an 
extent that he or she folds back to an inner level of activity (e.g., Property Noticing or Image 
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Having) as a sense-making strategy. Consideration of the task at a more basic level may result in 
more densely connected understanding that can then be examined and talked about from an outer 
level (e.g., Formalizing) perspective by the student. By this means, new understanding can 
migrate from inner-level thought to the level of Formalizing or Structuring. Sfard’s (1992) 
interiorization, condensation, and reification can be seen as the cognitive processes at work when 
a student successfully folds back and forth across the boundaries, respectively, between Image 
Making and Image Having, Property Noticing and Formalizing, and Observing and Structuring. 

Many of the students whose work was examined in this study were operating within the 
innermost five layers of the model throughout their college algebra experience.  Their teachers, 
on the other hand, were so familiar with college algebra that the content of the course had 
become Primitive Knowing for the construction of other mathematical understandings. 

Method 

Writing Assignment Rubric 
 The writing assignment was structured by a problem-solving writing rubric developed 
and piloted in an earlier study by the second author. The elements of the structured problem 
solving assignments were: 

• Problem restatement: Using complete sentences, state the problem and its main objective. 
•  Solution: Solve the problem, check and explain/justify the solution (if called for). 

[traditionally, the entirety of student written response for college algebra problems].  
• Objective identification and discussion: State the objective of the problem. Why do you 

think such a problem is assigned? What does one learn from this problem?  
• Links: Link the mathematical objects used in deriving your solution from start to finish. 

That is, construct a generic road map one would follow in finding a solution for a similar 
problem. 

• Vocabulary: State two or three vocabulary terms that are directly relevant to this problem 
or its solution. Provide a brief definition for each term.  

• Extend and explain: Create a problem similar to the one you have just solved and provide 
its solution; explain how the original problem and your problem are similar. 

 The rubric, acronym PSOLVE, was designed to foster reflection during problem solving 
and to help students develop a flexible understanding of the mathematics being studied. In the 
first step, P, stating the main objective in a problem situation promotes reflection by students on 
what it is they are being asked to do. In step S, solving and sometimes checking are procedures 
most students are accustomed to performing.  
 As Borasi and Rose (1989) noted, writing in mathematics has influence on the student as 
writer, on the teacher as reader, and on the interaction between student and teacher. While 
college mathematics instructors are usually fluent in the language of mathematics, many college 
students have difficulty with the densely iconic nature of college mathematics texts. Beyond the 
traditional solve-and-check, the primary purpose of step O is to open a line of communication 
between teacher and student based on explicit shared understandings of mathematical objects. 
This shared understanding, grounded in student word-use and developed over time, is also built 
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through steps L, V, and E.  Step L supports students’ ability to construct, identify, and 
communicate their own algorithm(s). Such construction and communication may be linked to the 
ability to generalize a problem situation to a more abstract structure and is a cornerstone in 
building sound mathematical habits of mind (Asiala, et al., 1991; Schoenfeld, 1992).  

 Between the specificity of L and generalization of E lies step V. This part of the 
PSOLVE activity helps form a shared lexicon for understanding between teacher and student – 
providing the teacher with student-based words and metaphors that the instructor can encourage 
students to map onto standard mathematical usage.  The process of writing out their 
understanding of mathematical symbols and other “jargon” provides students an opportunity to 
internalize the mathematics at hand by organizing the relationships between concepts, words, and 
symbols. Especially important in these steps may be the opportunity it gives students to 
contextualize mathematics, an important aspect to constructing understanding (Perret-Claremont 
& Bell, 1987; White, 2003). The design of the PSOLVE activity rubric was also based on the 
idea that practice with problem posing may play as significant a role in the building of 
conceptual understanding as problem solving (Brown, 2001; Pirie, 2002; Zazkis, Liljedahl, & 
Gadowsky, 2003). Problem posing is included, in addition to explanation, in step E. 

Student Participants 
 To examine the nature of articulated thought in mathematical problem contexts for 
students in college algebra, a curricular revision involving PSOLVE assignments was made in 
eight (of 45) sections of a traditional college algebra course at a large U.S. state research 
university. The students involved in the study were demographically representative of the 
institution: 71% European American, 12% Latino American, 5% Asian American, 3% African 
American, 2% Native American, 3% foreign national (4% unknown)1. Most were from public 
high schools within the same state.  

Assignments 
 Every few weeks in the eight PSOLVE-augmented sections of the course, students were 
asked to write about their work on a new mildly non-routine problem taken from the textbook 
(Larson, Hostetler, & Edwards, 1997).  These problems all came from the latter part of the 
exercise sets and were “mildly non-routine” because they required more than a direct application 
of some procedure from that section of the text. They called for strategy use or planning and 
coordinating of multiple procedures. A syllabus, including time-line for covering material and a 
list of suggested homework problems to assign was provided to all instructors by the course 
coordinator, Ms. Torus. The assigned PSOLVE items came from that list (see Appendix). 
Instructor Participants 
 The implementation of the PSOLVE homework assignments was uneven across the eight 
randomly selected2 augmented sections of the course. We chose to focus on the work of students 
in the classes of the two instructors considered by their teaching peers, and by students, to be the 
strongest teachers for college algebra in the department. Ms. Torus3 taught the non-PSOLVE 
class. She had seven years teaching experience (four at the university, three as a high school 
teacher), a high school mathematics teaching credential, M.S. degree in mathematics, and was 
the coordinator for all 45 sections of the course. Mr. Isom (the second author3) taught the 
PSOLVE section. At the time of the study he also had seven years teaching experience (five as a 
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graduate student, two at the university) and a Ph.D. in mathematics education. Both instructors 
relied mostly on lecture. Before the semester of this study, the pass-rates for students in these 
instructors’ courses were comparable. The performance of their students on previous semesters’ 
common final examinations was also comparable (i.e., there were no statistically significant 
differences). This was true regardless of the time classes met.  
 The classes of interest in this study met for an hour each Monday, Wednesday, and 
Friday in the Fall, 1997, semester. Class meeting time for Mr. Isom’s section was around noon, 
for Ms. Torus it was around 9 a.m.  In both cases the classes met in large rooms with florescent 
lighting, linoleum floors, unadorned walls (except for one wall of chalk boards in each room), 
and arm-desk chairs (i.e., chairs with small desks, approximately 16" wide by 24" long, fixed on 
an arm to one side; the arm-desk chairs were not attached to the floor and could be moved). 
Pre- and Post-test Instruments and Scoring 
 Students in all 45 sections of the course completed a common pre-test in the first week of 
the term and a common post-test during the last week of the semester. The pre-test had 15 free-
response items and a five-part matching item (where one column contained questions and a 
second column contained possible solutions to be matched). The post-test had 8 free-response 
items, 4 with multiple parts4. The authors created a scoring rubric for the pre- and post-test 
instruments independent of the respective instructors’ original grading of the tests.  The rubric 
assigned a zero if the student left a blank space on the test.  A score of 1 was assigned if the work 
offered by the student was incomplete, largely erroneous, or appeared to be irrelevant. A score of 
2 was assigned for substantially correct work which either failed to be correct because of an error 
in calculation, an error through self-reference (e.g., a student might do some work and then make 
a mistake in reading their own handwriting, transforming a sloppy six in a previous step to a zero 
in the next step), an error of omission, or stopping before a complete solution was reached.  A 
score of 3 was assigned if the student’s work was correct, the solution was correct, and no 
incorrect or additional work was present (e.g., a student who solved a quadratic involving 
elapsed time and discovered there were two roots, one of which was negative, would receive a 3 
only if the negative solution were clearly rejected; otherwise the score would be 2). 

 Each of the instruments (pre and post) was graded according to this rubric by the first 
author.  This grading was reviewed by the second author and by a third person, a Ph.D. colleague 
in the mathematics department with college algebra teaching experience at the university and 
with experience in mathematics education research.  Separately, a research assistant used the 
rubric to grade all pre- and post-tests.  With a few exceptions (on which the grade was arrived at 
by three-person consensus), the scoring matched, indicating high inter-rater reliability on the 
scoring of the instruments.  The fact that student subscores on comparable items within each test 
were also comparable indicates internal reliability. According to the instructors who designed the 
tests (including Torus and Isom), they had face validity (i.e. “the test ‘looks valid’ to the 
examinees who take it, the administrative personnel who decide on its use, and other technically 
untrained observers.” Anastasi, 1988; p. 144). A comparison of topics tested to the syllabus and 
problem-sets for the college algebra course made clear that there was representative content 
validity.  In a test using open-ended questions, internal reliability is difficult to determine with 
great security.  The consistency of scores on similar problems within each instrument was strong.  
Each idea was tested in some way by at least two items.  For example, the pre-test item discussed 
in detail below was one of three similar problems. A student’s scores on these three problems 
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rarely varied by more than one point. Similar, though not as nicely centralized, low variability 
was found on the post-test (i.e., the variance among like-item scores was low). 

 The quantitative and qualitative analyses were based on only the pre- and post-test pairs 
available. The pre-test was administered in all 45 sections of the course during the first week of 
class. In Mr. Isom’s class there were 38 students who took the pre-tests and 35 who took the 
post-test. However, only 30 of these were students who had begun the term with him (eight of 
the original students had dropped and five who added the course did so after the first week; they 
added college algebra and were not transferring from another section of the course).  In Ms. 
Torus’ class there were 38 who took the pre-test and 32 who did the post-test. Thirty of these 
were students who had begun the term with her (two added the class after the first week). Of this 
30, three were absent the day of the pre-test so that there were 27 students in her class for whom 
we had paired pre- and post-tests. Student work on pre- and post-tests was analyzed statistically 
with a standard statistical analysis package and qualitatively by way of constant comparative 
methods that coded and categorized student work (Miles & Huberman, 1994). 

Integrating the PSOLVE Assignments into the Course 
  The PSOLVE curricular cycle consisted of three stages for the instructor.  First, areas of 
content focus that appeared to be key for students were noted and an assignment created. Mr. 
Isom chose the central PSOLVE assignments, from the list of homework problems created by 
Ms. Torus, and provided the list to all eight instructors who were using PSOLVE. The 
assignments concerned the topics of slope, composition of functions, quadratic functions and 
modeling, and exponential modeling (see Appendix A for exact assignments from the text, 
Larson, Hostetler, & Edwards, 1997). In the second stage of the PSOLVE curricular cycle, 
students wrote up and turned in responses to an assignment. These write-ups provided instructors 
with a glimpse into students’ understanding and insight into (or struggles with) a problem 
situation. Finally, in the third stage, the teacher responded to student written work and students 
had the opportunity to revise their write-ups.  
  Each student individually completed her or his own collection of PSOLVE assignments. 
These writing exercises were assigned and collected at the same times as weekly homework 
exercise sets from the text. Student re-writing, in response to teacher comments on the first draft 
of each PSOLVE submission, was reviewed by the instructor within two weeks of the original 
due date. Students’ final grades with respect to all of their PSOLVE writings, their “portfolio,” 
were based on the collection of rewritten work and made up 10% of their course grade.5  Each 
student submitted a complete portfolio at the last class meeting.  Appendix A gives the minimal 
PSOLVE collection (of five problems) used by the eight instructors augmenting their courses as 
well as the three additional PSOLVE assignments Mr. Isom chose to use in response to the needs 
he perceived among his students. As can be seen in Appendix A, the PSOLVE work was 
presented to students as a type of assignment that was distinct from “regular homework.” 
  Homework assignments for the PSOLVE and traditional courses were comparable in the 
following sense: if the non-PSOLVE sections had an assignment of 12 problems then the 
PSOLVE sections’ homework assignment was 7 problems with the addition of one PSOLVE 
problem. Though the PSOLVE problems were from the textbook, the nature of PSOLVE 
assignments meant students spent more time working with at least five (for Mr. Isom’s class, 
with eight) of these problems than students in the non-PSOLVE classes. 
 In what follows, work by students in Mr. Isom’s PSOLVE augmented course is compared 
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to that by students in Ms. Torus’ course in two ways. We begin with a brief discussion of the 
results of quantitative analysis of student performance on common, free response, pre-test and 
post-test. However, it is qualitative analysis of the form, length, rigor, and internal consistency of 
written justifications in problem solutions on pre- and post-tests that constitutes the main body of 
the results.  

Results 
The students in PSOLVE sections started the semester with a lower average score on the 

common pre-test than the non-writing group (not statistically significant). Nonetheless, there was 
a statistically significant difference in achievement on the common post-test: the PSOLVE 
students scored higher (p < 0.05). The same was also true in a direct comparison of student 
scores in Mr. Isom’s and Ms. Torus’ classes (p < 0.05).  Given this quantitative result, the 
question of interest became: In what way(s) might students’ written explanations and 
justification be influenced by having used PSOLVE?  

The research included examination of all items on both pre- and post-tests. To illustrate 
what emerged regarding the differences between the groups we report, in particular, on analysis 
of student written work on problems that focused on logical sense-making about algebraic 
statements. After presenting information about the Primitive Knowing evidenced by the pre-test 
items, we give a detailed analysis of the nature of the strategies offered by students for solving a 
particular moderately non-routine problem on the common post-test. This analysis is framed in 
the language of the Pirie and Kieren model. 

 Three categories related to students’ devising and using problem-solving strategies 
emerged from analysis of the pre- and post-test items: locus of control, autonomy, and flexibility 
of articulation. The problem-solving work offered by students in the PSOLVE and traditionally 
taught (no writing) groups, combined with the higher performance on basic algebraic skills by 
the PSOLVE students on the common post-test, made it apparent that at the end of the semester 
the procedural and conceptual understandings of the traditional course students were not as 
robust as those of the PSOLVE group. In particular, the pre- and post-test responses of Ms. 
Torus’ students indicated little change over the course of the semester. For students in Mr. 
Isom’s class, several changes could be seen from pre- to post-test: an increase in efforts at 
articulation, more assertion of autonomous thinking, and broader appeals (to more than teacher, 
text, and tradition) in justification. There was a great deal of overlap in the strategies used by the 
students in the two classes. However, there were also strategies distinct to each of the groups.  

Where Students Began: Pre-test 
 On the pre-test students in both classes tended to justify their answers by appeals to 
authority (teacher, text, and “the rules”) or by lengthy, nonsensical or dead-end, algebraic 
manipulations. On the post-test, Ms. Torus’ class exhibited the same tendency. Students in Mr. 
Isom’s PSOLVE class who did make appeals to teacher, text, or tradition on the post-test also 
tended to fold their own sense-making efforts into their responses; this was accompanied by a 
notable absence of algebraic rambling.  
 Three pre-test problems used for comparison of student work in the category “logical 
sense-making about algebraic statements” are shown below. These items were presented as a 
group in the pre-test: 
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          Are the following equalities true or false? Explain.6 

  
 

 
 

The responses of all students to these pre-test items were exemplified by awkward, incomplete, 
or wandering attempts at explanation.  As an example, Table 1 summarizes the breadth of 
student response for Item 1: approximately one-third of the students in each class incorrectly 
asserted that the equality was true. The other two-thirds of each class correctly identified the 
equality as false. However, explanatory efforts were either absent (4 students in each class), 
incomplete (8 students in each class), or marginally comprehensible (7 in Isom’s class, 4 in 
Torus’). 
 The two classes did not differ significantly in their apparent mastery or their difficulties 
in communicating an understanding of the basic algebraic pre-requisites for the course.  That is, 
the students in the two classes appeared, qualitatively, to have approximately the same Primitive 
Knowing.  This observation is further reinforced, quantitatively, by the absence of any 
statistically significant difference in student pre-test scores between the two sections (though Mr. 
Isom’s section did have the lower of the two averages). 
Where Students Ended: Post-test 
 By comparison, student responses to an associated post-test question varied between Ms. 
Torus and Mr. Isom’s classes.  The post-test item whose responses we report here in detail: 
 True or false? To receive credit for this problem you must explain your reasoning. 
 If (7x-3)(2x-5)=3, then (7x-3)=3 or (2x-5)=3. 

On this post-test item, approximately one-third of each class (Torus: 8/27; Isom: 10/30) appeared 
to be operating at a Formalizing level in their understanding of the concept tested: asserting the 
statement was false and justifying their answers by articulating noticed properties of solutions. 
Examples of correct solutions from each class are discussed in the next three subsections. Most 
of the students who correctly answered the question solved the quadratic (7x+3)(2x-5)=3 for x 
and substituted at least one of the values obtained for x into the linear equations to show the 
solution did not satisfy either linear equality. However, the details of this process were 
qualitatively different for the two groups.  
Solution strategies – Locus of control 

Several distinct solution strategies were apparent in student attempts to address the 
“explain your reasoning” prompt.  First we describe these strategies and the ways in which 
student appeals to authority (their own or that of the text or teacher) were revealed in their 
strategies.  These appeals to authority are aspects of locus of control for reasoning (Schunk, 
1999). The description of strategies is followed by a discussion of the flexibility of articulation 
and accuracy of strategy use by students. Below, the category name is followed by the 
corresponding proportion of students in each class identified as being in that category. Each 

  
2. a

2
+ b

2
= a + b

  
1. a + b( )

2

= a
2 + b

2

  

3.
x

2
! 4

x + 2
=

x ! 4

2



Written Mathematical Justification  10  

student response was assigned to exactly one category (see also Figure 10). 
Meandering vocabulary – Isom, 2/30 (7%); Torus, 7/27(26%).  Students using this 

strategy provided a plethora of mathematical terms in their attempts to respond to “explain your 
reasoning.” In most cases, the terms were not clearly linked or appropriate to the question. The 
result was a sort of mathematical jargon dump (see Figure 2). Most of these students correctly 
asserted that the statement was False. We identified these responses as evidence of some Image 
Having about real number properties and that students were noticing something about algebraic 
properties but had not connected or condensed these processes. 

Meandering algebra – Isom, 4/30 (13%); Torus, 4/27(15%). This strategy relied on 
plenty of calculations, frequently in the form of incomplete mathematical statements and often 
without clear purpose or clear understanding. This was a sort of calculation dump on the part of a 
student (see Figure 3). Half of the students in this category said True, the other half did not give 
a True or False answer. We identified such responses as being evidence of students who had not 
interiorized their Primitive Knowing or Image Making around a meaning for the symbols used.  

“You can’t do that,” The Zero Product Rule – Isom, 4/30 (13%); Torus, 7/27(26%).  
A presumptive appeal to authority appeared in many student responses.  Some were empty of 
reference to a particular property and others called on the zero-product-rule (ZPR).7 Figure 4 
shows a typical response in this category. Students appeared to be involved in Property Noticing 
to the extent that the problem’s surface features, including its mathematical syntax, was similar 
to what they were accustomed to dealing with through the use of the ZPR.  In other words, 
students noticed that if the statement had read “If (7x-3)(2x-5)=0, then (7x-3)=0 or (2x-5)=0,” 
then the statement would have been true, and one justification might have been to cite the ZPR.  
Students using the “You can’t do that” strategy appeared to see no difference between necessary 
and sufficient conditions for invoking the ZPR, demonstrating difficulties with the conventional 
syntax of mathematics. As seen in the study by Dubinsky & Yiparaki (2000), students relied on 
their natural language habits, including noticing semantic similarities between a given problem 
situation and one that might be solved with a known/memorized method (like the ZPR) and 
attempted to reconcile the two. Unfortunately, though the ZPR holds if the product of linear 
factors is zero, it is not necessary for the product to equal zero for a similar statement to be true. 
It is entirely possible for the product of two linear factors to be 3 where one linear factor equals 3 
and the other does not.8  In fact, it is the existence of the conditional algebraic relationship within 
the “If..., then...” statement that makes this problem moderately non-routine.  

“Sure, you can do that,” The Three Product Rule – Isom, 4/30 (13%); Torus, 0/27(0%).  
In place of the “You can’t do that” strategy was the creation by some PSOLVE students of a new 
rule, the “three-product-rule” (TPR): if the product of two factors is 3 then at least one of the 
factors is equal to 3. It is worth noting that each of the students who created this rule had also 
used the ZPR, correctly, earlier on the post-test in responding to a routine problem that asked 
students to identify the zeroes of a quadratic equation with integer roots. The TPR is exemplified 
in the student response shown in Figure 5. Using the TPR strategy, students created a necessary 
condition for the statement to be True (rather than relying on the insufficient ZPR to justify an 
assertion that the statement was False). Clear in such responses was a non-standard use of 
“zeroes of an equation.” Many students used the phrase as a synonym for “solution of an 
equation,” even when the equation in question had not been set equal to zero. Although students 
asserting the new three-product-rule exhibited an autonomy of approach, there was no evidence 
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of reflection on whether or not such an argument as justification was connected to standard 
mathematical rules. As above with the ZPR strategy, the TPR strategy involved Property 
Noticing and echoed Dubinsky and Yiparaki’s (2000) report of students struggling to 
“experiment [in a mathematical context] in order to assess a mathematical statement.” However, 
with the TPR-centered “Sure, you can do that” strategy, unlike the ZPR-based “You can’t do 
that” approach, student explanations were usually consistent with what was given in the problem 
and did justify their assertion that the problem statement was True. The “You can’t do that” 
strategy, on the other hand, contained the inconsistency of an assertion that the statement about a 
product being three was False and justification through an appeal to a rule (the ZPR) that 
required the product to be zero. 

Solution substitution – Isom, 2/30 (7%); Torus, 1/27(4%). Some students solved one of 
the equations for x and then substituted solution(s) from it into one or more other expressions.  
The follow-through on this strategy was fraught with computational and logical errors.  In 
particular, most errors arose around the mathematical meaning of the word “or” in the problem. 
Student difficulties in parsing the “or” led to conclusions based on incomplete Formalizing: a 
student might correctly work out solutions to the two linear equations but conclude, after testing 
only one of the linear equation solutions (by substituting it into the quadratic), that because it did 
not “work” in the quadratic, the problem’s assertion must be false. That is, they appeared to 
believe conjunctively that both linear solutions would have to solve the quadratic for the problem 
statement to be true. An example of this kind of strategy is shown in Figure 6.  

“3 x 3 = 9” – Isom, 5/30 (17%); Torus, 3/27(11%). Students using this strategy noted 
that if both linear factors were equal to three then the product of those factors must be nine (or 
that “it would be larger” than 3 – see Figure 7). As was the case in the solution substitution 
approach, it appeared students did not or could not attend to the word “or” in the problem 
statement.  In each case, the student clearly treated “or” as “and.” Such conflation of meaning for 
disjunction and conjunction by students, at all ages, has been noted several times in the literature 
(Damarin, 1977; Hoyles & Küchemann, 2002; Vest, 1981). Also collected into this category was 
the solution strategy that asserted that the only way a product could equal three was if the factors 
were strictly less than three.  In both modes of this strategy, students tried to reason about the 
factors as number-like objects rather than as variable algebraic expressions. This might be seen 
as evidence of an incomplete condensation, where students folded back to Image Having about a 
process – factoring – in two different contexts and were Property Noticing about factoring 
without sufficient meta-cognition about any transfer between contexts.  

“Three is prime” – Isom, 3/30 (10%); Torus, 1/27(4%). Among the conceptual patterns 
that arose in student work was the notion that if the product of two linear algebraic factors was 
three (as in the hypothesis of the problem) then one of the factors must equal 3 and the other 
must equal 1.  That is, students applied prime decomposition concepts (not a topic in the course) 
for the factoring of whole numbers to the factoring of polynomials. In fact, when carried out 
carefully, this strategy did result in a correct solution through a loose sort of proof by 
contradiction (see Figure 8). That is, students were moving toward reification as they were 
Formalizing. Three things were especially interesting about the “three is prime” solution 
strategy. First, though students using this strategy did appeal to rules, they did so by calling upon 
a rule from outside the content of the course.  That is, students using this strategy were 
synthesizing knowledge in a procedurally meaningful way.  Secondly, the arguments used by 
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students were logically consistent (unlike the ZPR justification). Thirdly, students who 
effectively used the “three is prime” strategy were generating a proof. A complete and correct 
use of the strategy required the kind of Observing and Structuring involved in a proof by 
contradiction.  

Solution comparison – Isom, 5/30 (17%); Torus, 4/27(15%). Much student work in this 
category involved Formalizing calculated solutions to at least two equations and some included 
Observing and Structuring through discussion of the nature of various potential solutions. The 
(potential) solutions were then compared to determine whether the values for x calculated were 
consistent with the problem statement’s being True or False. As with solution substitution, it was 
not always clear that students using this strategy understood the significance of the “or” in the 
item. Consequently, depending on the kinds of algebraic errors that might arise, the strategy was 
sometimes fairly successful and sometimes not (see Figure 9). 
Use of the Strategies – Flexibility of articulation 
 That the group of students who completed PSOLVE assignments evidenced more skill at 
clear articulation was to be expected. After all, they had practiced writing about mathematics. 
However, the category of “flexibility with articulation” had to do with students’ description of 
their use of strategies, particularly the ones they created for themselves. In Figure 10 are the 
distributions of the solution strategies for each class. Students in the two classes appeared to have 
been just about as likely to appeal to the solution comparison strategy.  The notable differences 
in strategy choice are at the base of the bars of Figure 10: meandering strategies, that we 
identified as hovering at the interface between Image Having and Property Noticing, accounted 
for 20% of the PSOLVE student responses and for 41% of the non-PSOLVE responses.   

Though only two of Mr. Isom’s 30 PSOLVE students gave solutions exhibiting a 
meandering writing style, a quarter of those from Ms. Torus’ non-PSOLVE class offered 
solutions in this category. The other interesting aspect of Figure 10 has to do with locus of 
control.  Not a single student in Ms. Torus’ non-PSOLVE class created their own rule in an 
attempt to answer the “explain your reasoning” prompt while one-eighth of Mr. Isom’s PSOLVE 
students did. Perhaps, the PSOLVE students ran into a difficulty with Image Having. They may 
have noticed properties that were familiar but not the same as the ZPR, perhaps folding back to 
make a new image with new properties, then Formalizing it as the TPR. One-quarter of the non-
PSOLVE and one-eighth of the PSOLVE students noticed ZPR-like properties and simply 
invoked the unquestioned authority of the zero product rule.    

Use of the Strategies – Accuracy 
Of equal importance to flexibility was the frequency of substantially and completely 

correct solutions.  Accurate (i.e., substantially or completely correct) solutions contained no 
logical inconsistencies or algebraic errors or irrelevancies. In the PSOLVE class six solutions 
were substantially (4 students) or completely (2 students) correct.   In the non-PSOLVE class, 
three of 27 solutions were substantially (2 students) or completely (1 student) correct.  This 
means, of course, that in the PSOLVE-augmented course only 6/30 (20%) of the students offered 
accurate solutions to this particular mildly non-routine problem, along with 3/27 (11%) of the 
students in the traditional course. 
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Discussion 
 The qualitative difference between the responses of students from the two courses is that 
the non-standard mathematical conceptions held by some students were clear in the PSOLVE 
students’ work. For example, a fundamental problem understanding the use of “zeroes” and “or” 
in mathematical contexts was easily discerned in the articulated, though often erroneous, 
PSOLVE students’ solutions.  This was especially clear in student writing using the “Sure, you 
can do that,” “Three is prime,”  “3 x 3 = 9,” and solution comparison strategies. These strategies 
made up 57% of the PSOLVE class’ responses. So, more than half of the PSOLVE class was 
communicating in enough written detail by the post-test that student interpretation of “zeroes” 
and “or” could be identified.  On the other hand, 67% (“You can’t do that,” meandering algebra, 
and meandering vocabulary strategies) of the non-PSOLVE students offered such brief or 
obscure responses that no clear indication of such issues was apparent.  

Primitive Knowing, Image Making, and Image Having 
 The two meandering strategies seem to indicate understanding at work below the 
Property Noticing level. For this particular problem situation, 20% of the PSOLVE group and 
41% of the non-PSOLVE group offered meandering solutions at Image Having or more basic 
levels of understanding. These students may have been noticing properties, but what they were 
and how they were connected might only be conjectured. 

Property Noticing and Formalizing 
 Responses using the solution substitution approach indicated students had noticed some 
properties but not others (e.g., properties of “or” and “zeros” as mathematical indicators) and 
were likely to have difficulty with formalizing them. About 7% of PSOLVE and 4% of non-
PSOLVE students seemed to be entering the Property Noticing level. These students may have 
had some needed Primitive Knowing and associated images (e.g., about solving for a variable) 
but not other understanding (about “or” and “zeros”) to which they could fold back and from 
which they could build completely correct solutions. 

 Students relying on the “You can’t do that” and “Sure, you can do that” methods might 
be said to be operating largely at Property Noticing level – their connecting of the problem 
statement with either the zero-product-rule or the new three-product-rule could be taken as an 
indicator that some properties were noticed though formalization of these noticed properties was 
still nascent. In each class, then, 26% of the students may have been operating at the Property 
Noticing level in this problem situation. 

 As mentioned above in our discussion of the various solution strategies, some approaches 
exemplified articulate, formalized, levels of understanding. Noticed properties were presented 
and discussed formally by those students using the solution comparison, “Three is prime,” and “3 
x 3 = 9” strategies. These indicators of operation at the Formalizing level were present in 44% of 
the PSOLVE students and in 30% of the non-PSOLVE group. 
Beyond Formalizing 
 Of the students who had come through the PSOLVE-enhanced course, three (10%) 
offered justifications that seemed to be more holistic, perhaps at the Observing or Structuring 
level of understanding in Pirie and Kieren’s (1994) framework. These included the correct 
“Three is prime” strategy use shown in Figure 8. No student in Ms. Torus’ class gave a solution 
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that could be construed as demonstrating understanding at the Observing level or higher. 
 

Conclusion 
 The students in the PSOLVE classes were statistically significantly more skilled on 
routine problems than their non-PSOLVE counterparts. Moreover, as evidenced by the detailed 
examination of one class group, their solutions were better articulated.  The non-standard 
mathematical conceptions held by students were clear in PSOLVE students’ written 
mathematical justifications. The benefits of PSOLVE were two-fold: students were better at 
doing routine algebra problems and they communicated their thinking on non-routine problems. 
Implications for Learning Theory and Research 
 We conjecture that PSOLVE augmentation of a traditional college algebra class leads to 
more robust problem situation images. A problem situation image is like a concept image (Tall & 
Vinner, 1981), but is based on a problem context rather than a concept (Selden, Selden, Hauk, & 
Mason, 2000).  Among the aspects of a problem situation image are noticed properties, 
condensation of processes and articulation of their formalized connections, and observations a 
student might make about them on the way to reification. Being able to generate a particular kind 
of observation, about what a possible solution method might be, may be very valuable in learning 
to solve problems. In addition to the observation of such tentative solution starts, the ability to 
pose a simpler, related problem is one of the major problem-solving strategies employed by 
mathematicians. Whether or not a PSOLVE student’s problem situation images include more 
tentative solution starts is not something our data collection was designed to discover. Perhaps, 
as argued by Selden, et al. (2000), including a prompt that asks for possible solution starts 
(before asking students to solve), would activate more mental connections among problem 
situation images through noticed and formalized understandings and would foster condensation 
of strategic approaches. Future work could be based on P-T-SOLVE, where T is “Tentative 
solution starts: before solving it, give at least two different ways you might begin to work on this 
problem.” Such work could also be finer grained, examining the evolution of students’ written 
mathematical justification across the semester on the PSOLVE assignments as well as across 
quizzes and in-term examinations. Of particular interest would be the nature of student efforts to 
problematize situations (Hiebert et al., 1996). That is, does the use of PSOLVE foster the ability 
to see situations as problems to be solved rather than as opportunities to apply mastered 
procedures? A hint that this might be the case arose in this study when several PSOLVE students 
resorted to creating the TPR rather than applying the ZPR in responding to a non-routine item, 
even though they had correctly applied the ZPR on a routine item elsewhere in the post-test. 

 Another obvious place for further research is to follow students from a PSOLVE 
augmented course into another collegiate mathematics class. The question of interest would be: 
What is the nature of the strategies used by students and what is the form of their articulation? 
That is, to what extent do the effects of locus of control, flexibility of articulation, and accuracy – 
reported for the college algebra students in the current study – persist?  Also of interest would be 
the robustness of structure and flexibility of use for any content knowledge that students might 
continue to use, perhaps as Primitive Knowing, in further mathematics learning. 
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Implications for Research on College Teaching 
Many college algebra instructors are inexperienced teachers. For example, graduate 

teaching assistants (GTAs) are novice instructors whose advanced mathematical thinking 
requires the use of college algebra as Primitive Knowing. It may be that it is quite difficult to 
treat an entire subject as primitive, in this sense, from 9 to 10 a.m. in a graduate complex analysis 
course and then suddenly switch perspectives – to college algebra content as something that must 
be subjected to Property Noticing, Formalizing, Observing, and Structuring for the purpose of 
teaching it – from 10 to 11 a.m.  For this study we concentrated on instructors who had 
completed their mathematical graduate degrees and had several years experience teaching 
college algebra. It would be interesting to know the consequences, in terms of both student 
achievement and college teaching ability development, for GTAs implementing PSOLVE in the 
undergraduate courses they teach. 

 In particular, a study of novice college instructors implementing PSOLVE (or 
PTSOLVE) might also use the Pirie and Kieren (1994) framework to describe the development 
of college instructors’ pedagogical content knowledge (PCK).  PCK is the complex structure of 
content knowledge, syntactic knowledge (of forms of mathematical representation and 
communication), anticipatory knowledge (of possible challenges and/or smooth transfer points 
for someone building their understanding of mathematical content), and knowledge for enacting 
teaching strategies in the classroom (see, for example, Ball & Bass, 2000). 
 Implications for College Teaching Practice  
 Through regular PSOLVE assignments, instructors may have access to clear messages 
about what students do not know because the students learn to write clearly about what they 
think they know. Despite national policy guidelines and efforts in K-12 schools to implement 
mathematics process standards in communication and reasoning (National Council of Teachers 
of Mathematics, 2000), many students still stumble through college algebra. Students seem to 
learn a kind of visitor’s guidebook to mathematical language and standard usage by trial and 
error, mastering complete phrases that work in particular situations (e.g., using the ZPR as an 
explanation and justification in a situation where it is neither; or creating a unique conjugation of 
it, like the three-product-rule reported here).  The use of PSOLVE homework assignments in this 
study had the added value of increasing fluency and articulation of students in their written 
responses to quiz and exam questions. As mentioned above, this increased ability among 
undergraduate students to say how they were thinking may facilitate a growth in pedagogical 
content knowledge for the instructor.  For this reason, we feel that PSOLVE may be a very 
useful tool in helping new college faculty, particularly graduate teaching assistants (GTAs), to 
develop their teaching skills.  Rather than noticing that “Gee, all these students are just wrong” 
or “everyone gets it because they all say ‘false’ (in spite of nonsensical explanations offered)” 
the novice instructor presented with PSOLVE student writing has an opportunity to discern 
where student difficulties lie.  In fact, for any instructor, knowing more about a student’s non-
standard interpretation of mathematical concepts allows for the development of effective 
classroom and curricular response.   

A novice college teacher may view college algebra as primitive and needing no 
examination. Implementation of PSOLVE may challenge such an instructional view by exposure 
to the sincere and articulate struggles of undergraduates to structure their understanding.  This, of 
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course, assumes an educational perspective and intention on the part of the instructor to create 
and maintain a constructivist learning environment9 (Wilson, 1996). The second author’s 
experiences indicate that folding PSOLVE assignments into college algebra facilitates a 
constructivist learning environment. The work from PSOLVE students can fulfill expectations 
for clarity in communication (both generally and about mathematics in particular).  In his work 
with GTAs, the second author also has seen new college teachers become quite interested in 
PSOLVE as a pedagogical tool, something they can use right away and that requires more 
thorough cognitive responses from their students. Especially appealing about PSOLVE is that it 
is a simple addition to lecture-based teaching that requires some feedback from the instructor but 
that can be implemented without a major investment of class meeting time.  

 Even if students work in groups to complete PSOLVE problems, the very nature of the 
assignment provides a framework for discourse and verbalization of justifications. One value in 
reflective problem solving practice is that it encourages students to take a mental step back from 
themselves and reflect on their successful, and unsuccessful, efforts. What is more, because 
computers have the capacity to keep records of process, a computer-assisted version of PSOLVE 
(or PTSOLVE,) could keep track of the good, bad, and ugly in students’ PSOLVE efforts 
(individually or as teams). Such an audit trail of student work could, in itself, become a useful 
meta-cognitive tool for students, a way of making explicit the usually tacit paths they trace out in 
attempting to solve, explain, and extend problems. Computer feedback, in addition to instructor 
feedback, on problem-solving might enhance interiorization, condensation, and reification of 
procedural and conceptual understandings as they develop. 
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Appendix A. The PSOLVE assignment. 
This handout is to be used as a model to follow when analyzing selected mathematics problems.  
The PSOLVE acronym stands for Problem, Solution, Objects, Links, Vocabulary, and 
Extensions.  After each PSOLVE assignment has been completed, turned in, graded, and 
returned you will be asked to rework the assignment fixing any errors.  Each of the individual 
PSOLVE exercises will be assigned and collected at the same time the regular homework 
problems are assigned and collected from the relevant sections of the text. The PSOLVE 
assignments need to be turned in separately.  Your final grade (10% of your course grade) with 
respect to your PSOLVE portfolio will be based on the collection of all rewritten work.  The 
completed portfolio of all the writing assignments will be collected during the last class meeting 
in April. NO LATE WORK WILL BE ACCEPTED. 
P: State the main objective of this problem in a complete sentence. 

S: Solve the problem, check and explain the solution (if required). 
O: From either the original statement of the problem or in the mathematics you used in deriving 

your solution identify any mathematical objects that are new to your understanding or are 
objects which you do not understand (e.g., formulas, functions, concepts, geometric 
properties, symbols, etc.) 

L: Link the mathematical objects used in deriving your solution from start to finish.  That is, 
construct a generic road map one would follow in finding a solution for a similar problem.  
Example: point and slope → point-slope formula → slope intercept form → y-axis intercept. 

V: State two or three vocabulary terms that are directly relevant to this problem or its solution. In 
your own words provide a brief definition for each vocabulary term you have identified. 

E: Extend and explain: create a similar problem and provide its solution, explain how the original 
problem and your problem are similar. 

 

  PSOLVE TOPIC 
  Section 1.2  #50 Slope 
  Section 1.4  #57 Maximizing Area 

 Section 1.6  #65 Composition of functions 
  Section 3.1  #57 Quadratic Height vs. Distance 

  Section 4.5  #36 Exponential Population Growth 
 

Additions made by Mr. Isom 
  Section 2.1  #72 Similar Triangles 

  Section 3.4  #14 Linear Factors 
  Section 5.1  #59 Cost and Revenue 

Note: Section and problem numbers are from Larson, Hostetler, & Edwards (1997). 
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Table 1. Summary of Student Response to Pre-test Item 1 
 

True False 

35% of student responses 65% of student responses 

A. No explanation (1/3 of “True” responses). 
B. “True, because of the distributive 
property.” 
C. “Yes, multiplication is communative.” 
D. “True, because each variable was 
      squared.” 
E. “True, both properties raised to the 2nd  
     power - basically just got rid of the  
     parantheses.” 
F. “True, each item inside the parenthesis is  
     taken to the power outside.” 
G. “True, a2+b2=a2+b2” 

Calculation shown: (a+b)2=a2+2ab+b2 
followed by:  
A. No explanation (1/4 of “False” responses). 
B. “a2+2ab+b2 = a2+b2 .”  
C. “False, it is not squared properly.” 
D. “False. Example: a=2, b=3, 52=25 but  
      22+32=13.” 
E. “No, (a+b)2 is a 'foil' problem.” 
F. “False, what is in parentheses always goes  
     first.” 
G. “False, they won’t factor out to be equal.” 
H. “False, not all alphabets are multiplied.” 
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Figure 1. Pirie and Kieren's (1994) nested framework for mathematical understanding. 
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Figure 1. Schematic of Pirie and Kieren's (1994) nested framework for mathematical understanding. 
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Figure 2. Meandering vocabulary.  

 

 
 
x-17 
 Figure 3. Meandering vocabulary. 
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Figure 3. Meandering algebra. 

a-6 
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Figure 4. The zero-product-rule. 

 
 
a-9 
Figure 4. Student appeal to authority of “the rules”: the zero-product-rule.                      
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Figure 5. The “three-product-rule.” 

 
 x-16 
 
Figure 5. Student appeal to authority of rules via a “three-product-rule.” 
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Figure 6. Correct substitution attempt with apparent “and” for “or” error.  

 

 
 
a-25 
Figure 8. Correct substitution attempt with apparent “and” for “or” error.  
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Figure 7. “3 x 3 = 9” strategy. 

a-4: 
False because you have to use the foil method and the  
answers won’t come out to whole numbers. each side will not equal  
the other one. if ( 7x – 3 ) = 3 and ( 2x – 5 ) = 3 then the  
product of those two will not also be 3 it would be larger. 

 
Figure 6/ Example of “3 x 3 = 9” strategy. 

 
 
 
 
 
 
 
 
 
 



Written Mathematical Justification  29  

Figure 8. “Three is prime” strategy as an informal proof by contradiction.  

 x # 11: 
  
  

 
Figure 7. Student successfully using the “three is prime” strategy in conjunction with an  
 
informal proof by contradiction. 

 
 
 
 
 
 
  
 



Written Mathematical Justification  30  

Figure 9. Solution comparison method. 

 
a-16 
Figure 11. Comparison by non-PSOLVE student. 
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Figure 10. Distribution of solution methods in the two classes. 

 

  
 
Figure 12.  Graphical representation of the distribution of solution methods in the two classes. 
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Notes 
                                                
1   The demographic labels used by the university on entrance forms. 
2    Eight course section numbers were drawn from a collection of numbered tickets mixed in a 
small cardboard box. The second author's was one of these names. All who were approached to 
participate accepted; however, by the end of the semester only four had regularly used PSOLVE 
assignments throughout the term. 
3  The name “Torus” is a pseudonym.  
4  For example, given the coordinates of points P, Q, and R, students were asked to:  
   (a) Find the equation of the line through P and Q;  
   (b) Find the equation of the line through R that is perpendicular to the line containing P and Q;  
   (c) Algebraically find the point of intersection for the two lines found in parts (a) and (b);  
   (d) Sketch the answers to (a) and (b) on the same axes and label all intercepts and points of 
   intersection. 
5   Homework exercises made up another 10% of the class grade. Together PSOLVE and 
homework were 20% of the course grade in PSOLVE classes.  In non-PSOLVE classes, 
homework was 20% of the course grade. 
6   It is worth noting here that the wording of this, and all other problems, was agreed upon by the 
group of instructors for college algebra who wrote the instruments.  Like most mathematicians 
and graduate students, these instructors were not trained in test writing.  The ambiguity inherent 
in such questions is another aspect of mathematical communication that students must somehow 
master. 
7   The zero product rule: If the product of factors is zero then at least one of the factors is zero. 
8   For example, “If (7x − 1)(-7x + 5) = 3, then (7x − 1) = 3 or (-7x + 5) = 3” is true. 
9   A constructivist learning environment is “a place where learners may work together and 
support each other as they use a variety of tools and information resources in their guided pursuit 
of learning goals and problem-solving activities” (Wilson, 1996). 
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